
Accountable Light Client Systems for
Proof-of-Stake Blockchains

Oana Ciobotaru1 ⋆, Fatemeh Shirazi2, Alistair Stewart3, and Sergey Vasilyev3

1 Pi Squared firstname.lastname@gmail.com
2 Parity Technologies firstname.lastname@gmail.com

3 Web3 Foundation firstname@web3.foundation

Abstract. A major challenge for blockchain interoperability is having an on-chain light client
protocol that is both efficient and secure. We present a protocol that provides short proofs
about the state of a decentralised consensus protocol while being able to detect misbehaving
parties. To do this naively, a verifier would need to maintain an updated list of all participants’
public keys which makes the corresponding proofs long. Existing solutions either are not able
to detect misbehaving parties (i.e. lack accountability) or are not efficient. We define and
design a committee key scheme with short proofs that does not include any of the individual
participants’ public keys in plain which makes it very efficient. Our committee key scheme,
in turn, can use one of our two custom designed SNARKs which have fast prover times.
Our committee key scheme can be used in an accountable light client system as the main
cryptographic core for building bridges between proof-of-stake blockchains. By allowing a
large number of participants, our scheme allows decentralisation and interoperability without
compromise. Finally, we implement a prototype of our custom SNARKs for which we provide
benchmarks.

Keywords: Custom SNARKs · Accountable light clients · Secure bridges

1 Introduction

Blockchain systems rely on consensus among a number of participants, where the size of this num-
ber is important for decentralisation and the foundation of blockchain security. To know that a
transaction is valid, one needs to follow the consensus of the blockchain. However, following con-
sensus can become expensive in terms of bandwidth, storage and computation. Depending on the
consensus type, these challenges can be aggravated when the size of participants’ set becomes big-
ger or when the participants’ set changes frequently. Light clients (such as SPV clients in Bitcoin
[57] or inter-blockchain bridge components that support interoperability) are designed to allow re-
source constrained users to follow consensus of a blockchain with minimal cost. We are interested
in blockchains that use Byzantine agreement type consensus protocols, particularly proof of stake
systems like Polkadot [20], Ethereum [65] or many other systems [53,19,63]. These protocols may
have a large number of consensus participants, from 1000s to 100000s, and in such proof-of-stake
(PoS) protocols, the set of participants often changes regularly.

Following the consensus protocols in the examples above entails proving that a large subset of a
designated set of participants, which are called validators, signed the same message (e.g., a block
⋆ Research done while first author was affiliated at Web3 Foundation. First and third author contributed

equally to this research.

header). Existing approaches have limiting shortcomings as follows: 1) verifying all signatures which
has a large communication overhead for large validator sets; 2) verifying a single aggregatable
signature, by computing an aggregate public key from the signer’s public keys, has the shortcoming
that any verifier still needs to know the entire list of public keys and this, again, has expensive
communication if the list changes frequently; 3) verifying a threshold signature which has two
shortcomings: first, such a signature does not reveal the set of signers impacting the security of
PoS systems; second, it requires an interactive setup which becomes expensive if the validator set
is large or changes frequently.

Our Approach: We introduce a Committee Key Scheme to succinctly prove that a subset of signers
signed a message using a commitment to a list of public keys of all signers. Our primitive is an
extension of an aggregatable signature scheme and it allows proving the correctness of an aggregate
key of a subset of signers, which can be used to verify an aggregate signature. In more detail, the
committee key scheme defines a committee key which is a commitment to all the signers’ public
keys and the subset of signers are specified using a bitvector. The committee key scheme generates
a succinct proof that a particular subset of the list of public keys signed a message. The proof can
be verified using the committee key. Using the committee key, the proof and the bitvector, one can
verify that the corresponding subset of validators signed the message. Public keys or signatures
are usually 100s of bits long and as a result, although the bitvector has length proportional to the
number of validators, this scheme reduces the amount of data required by a factor of 100 times
or more. We could instantiate our committee key scheme using any universal SNARK scheme and
suitable commitment scheme. However, to avoid long prover times for large validator sets, we use
optimised custom SNARKs. We have implemented these SNARKs (Section 3) and they ensure fast
enough proving times for the use cases we consider: a prover with commodity hardware can generate
these custom SNARK proofs in real time, i.e., as fast as the consensus generates instances of this
problem.

Accountable Light Client Application: Light clients allow resource constrained devices such as
browsers or phones to follow decentralised consensus protocols. A blockchain is also resource con-
strained and hence could benefit from a light client system. In this case a light client verifier (e.g,
smart contracts on Ethereum) allows building trustless bridges protocols between blockchains. Cur-
rently, computation and storage costs on existing blockchains are much higher than those in a
browser on a modern phone. If such a bridge is responsible for securing assets with high total
value, then the corresponding light client system which defines such a light client verifier must
be secure as well as efficient. Using the primitives and techniques described in this work, one can
design a light client system with the following properties: accountability, asynchronous safety and
incrementability as reviewed below.

Accountability Our light client system is accountable, i.e., if the light client verifier is misled and the
transcript of its communication is given to the network then one can identify a large number (e.g.,
1/3) of misbehaving consensus participants (e.g., validators in our case). Identifying misbehaving
consensus participants is challenging in the light client system context when we want to send
minimal data to the light client verifier. However, identifying misbehaviour is necessary for any
proof of stake protocols including Polkadot and Ethereum whose security relies on identifying and
punishing misbehaving consensus participants.

Asynchronous Safety Our light client system has asynchronous safety, i.e., under the consensus’
honesty assumptions, our light client verifier cannot be misled even if it has a restricted view of the

2

network, e.g., only connecting to one node, which may be malicious. This is because our light client
system inherits the property of asynchronous safety from the Byzantine agreement protocol of the
blockchain. Such light client systems would not be possible for consensus based on longest chains.

Succinctness Our light client system is incremental, i.e., its succinct state is incrementally updated
- it is optimised to make these updates efficiently, which is particularly relevant for the bridge
application, as opposed to trying to optimise verifying consensus decisions from the blockchain
genesis.

1.1 Impact on Decentralisation

For a blockchain network, having a large number of validators contributes greatly to better decen-
tralisation. This leads to better security both in terms of less points of physical failure as well as
being able to distribute control over consensus which makes collusion harder. Some protocols have
restricted their validator numbers to make light clients or bridges more efficient, e.g., by being able
to run a DKG for threshold signatures (e.g., Dfinity [64]) or obtaining Byzantine agreement with all
validators on every block (e.g., Cosmos [19]). More efficient light clients for blockchains with large
validator sets offer both decentralisation and interoperability (bridging) without compromise.

1.2 Relevance to Bridge Security

In this section we review the impact of our scheme on bridge security. Blockchain bridges are
protocols that allow value transfer between blockchains. Bridges have frequently been the target
of attacks. We note that $1.2 billion has been stolen in attacks on insecure bridges during first 8
months of 2022 alone [4,3]. Of the top 10 crypto thefts of all times, $1.6 billion out of $3.4 billion
come from bridge attacks [3]. These confirm that bridges have frequently been a weaker point,
compared to the security of the blockchains themselves and they carry a lot of economical value.
An ideal bridge would be as secure as the least secure of the two blockchains. The most secure
bridges use on-chain light client systems, e.g., Cosmos IBC protocol [42], to achieve this. Each
bridged chain follow the other chain’s consensus on-chain. To simplify, we will consider an on-chain
light client of chain B on chain A, although B will also have the same for A. If B’s consensus and
the on-chain logic of A are secure, then adversary cannot convince the logic of A that B decided
some event that B’s clients do not agree as decided. This translates to the adversary for example
not being able to create value on A without having locked any value on B.
A main reason why bridges might not use this approach is efficiency. Smart contracts and other on-
chain logic is an extremely resource constrained environment compared to browsers or phones that
light clients might target. One approach for efficiency is to design B’s consensus so that the light
clients are cheaper, for example by reducing the validator numbers. Cosmos chains currently have
33-175 validators [56],[55]. Many chains have many more, e.g., Ethereum’s hundreds of thousands
of validators, for more decentralisation and security. Alternatively, the light client can use threshold
signatures however that means not having the same accountability guarantees and also that limits
validator numbers in practice both discussed elsewhere.
Another approach to reducing on-chain complexity is optimism. Entities make a claim on chain A
that something happened on chain B and this is accepted if no entity makes an on-chain challenge
within a certain time, claiming that this is incorrect and triggering a more expensive procedure.
A bridge that uses this approach is Optics for bridging Celo to other chains [58]. A less extreme
example of this approach is NEAR’s Rainbow bridge [34], where signatures are stored but not
checked unless the correctness of a signature is challenged. The optimism approach relies on the

3

censorship resistance of blockchain for security. In practice, blockchains may be censored for a period
of time by an attacker with enough resources. An example of this was the result of the first round
of Fomo3D on Ethereum [61], a smart contract that would pay a jackpot, a large amount (in the
end 10,469 ETH), to the last user to pay the contract when no user does so for 30 seconds. The
jackpot grew to such a large amount that it was worth a user buying up all the block space for
30 seconds [61]. For a claim and challenge protocol, the challenge is itself quite computationally
expensive, so it may be sufficient to increase the cost of computation, the gas price on Ethereum, to
make such a challenge unprofitable. Security against this attack requires a large reward for challenges
or a long challenge period. For example the rainbow bridge has an 8 hour challenge period [35].
Long challenge periods would mean that bridge operations take a long time with consequences for
usability.
Stakers in proof of stake protocol have an incentive for the chain (chain A) using that protocol to
keep working, however they may not have stake in a chain (chain B) bridged to their chain. As a
result, they may have no particular incentive in the correct functioning of a light client of chain A on
chain B and so not to mislead the light client. In the case when the protocol of chain A has slashing,
if an accountable light client on chain B is misled, one can prove to chain A, using information that
is publicly available on chain B, of validator of chain A misbehaving in a way that will result in
those validators being slashed on chain A. This gives the bridge similar economic security to chain
A itself.

1.3 Applicability of Our Scheme

Our scheme is applicable to proof of stake blockchains where if something is decided by the chain,
then a message is signed by some threshold fraction of a validator set, defined as a set of nodes or
their public keys, which changes at well-defined times, those changes being signed by an appropriate
threshold of the existing set. As mentioned, such chains as Polkadot, the many Cosmos chains, or
Ethereum fit this model. Our scheme is not applicable to chains using proof of work or many other
proof of X schemes. Nor is it applicable to proof of stake protocols when only random validators
or random subsets of validators decide something and the whole set never votes, such as protocols
using the longest chain rule without a finality gadget.
Our scheme might well require a hard fork to be applied to many blockchains, especially those
that have not implemented the required cryptography. It should be easily implementable for chains
that use BLS signatures for consensus but those using signatures that do not support aggregation
(e.g., the many using Ed25519), would need to use SNARKs with much slower prover time (e.g.,
zkBridge [66] for Ed25519). To naively implement our scheme, we would also want validators to
compute and sign the commitment to the next set. We note however that this is not strictly
necessary, as the commitment could be computed on chain, maybe in a smart contract, as long as
light client proof of the result of this computation can be constructed. This would result in longer
proofs that cover validator set changes. For blockchains with expensive on-chain computation,
native code support for the cryptography we use, e.g., with precompiles for smart contracts, might
be required. It is planned to make the required changes to Polkadot and implement this scheme for
it. We discuss in detail what would be required for a light client of Ethereum in Appendix M.

Structure The paper is organised as follows. In Section 2, we sketch our proposed protocols and
compare them to existing work. In Section 3 we give benchmarks for our custom SNARKs imple-
mentation. In Section 4, we give cryptographic preliminaries necessary for later sections. In Section 5
we describe one of our custom SNARKs and our committee key scheme. We conclude in Section 6.

4

Our work contains an extensive appendix. In Appendix A we remind the definition of aggregatable
signatures and provide an instantiation that is a variant of the BLS signature scheme [14]. In Ap-
pendix B we extend the definition of a SNARK to the new notion of a hybrid SNARK; we use this
notion for proving the security of our custom SNARKs. In Appendix C we provide the new notion
of ranged polynomial protocols for conditional NP relations. In Appendix D we tackle a special
case mentioned in Section 5. In Appendix E we give the postponed proofs related to the packed
accountable protocol from Section E. In Appendix F we extend the standard PLONK compiler into
a compiler for hybrid SNARKs. In Appendix G we provide a rolled out hybrid model SNARK com-
piled using the steps described in Appendix F. In Appendix H we compare standard PLONK with
the SNARKs derived using our compiler. In Appendix I we provide the postponed security proof for
our committee key scheme. In Appendix J we give a formal model for accountable light clients while
in Appendix J.3 we provide a concrete instantiation. In Appendix K and in appendix L we prove
the soundness and, respectively, the accountability completeness and accountability soundness of
our light client instantiation. In Appendix M we explain how a modified version of our accountable
light client can be applied also to Ethereum.

2 Our Solution

In this section we present a sketch of our solution for both the committee key scheme and the
accountable light client system, then describe the technical challenges and contributions and finish
with an overview of related work.

2.1 Sketch of Committee Key Scheme (CKS)

Suppose that a prover wants to prove to a verifier that a subset S of some set T of signers with equal
stakes have signed a message. One obvious approach would be using BLS aggregatable signatures
with the following steps:

a. Verifier knows all public keys {pk i}i∈T of signers.
b. Prover sends the verifier an aggregatable signature σ and a representation of the subset S.
c. Verifier computes the aggregate public key apk =

∑
i∈S pk i of the public keys of signers in S.

Then it verifies the aggregatable signature σ for the aggregate public key apk and it accepts if
the verification succeeds.

However, we can represent a subset S of a list of signers compactly using a bitvector b: the ith
signer in the list is in S if and only if the ith bit of b is 1. Our committee key scheme describes an
alternative approach:

a’. Verifier knows a commitment C to the list of public keys (pki)i∈T .
b’. Prover sends the verifier an aggregatable signature σ, a bitvector b representing S, an aggregate

public key apk and π, a succinct proof that
apk =

∑
i bipk i i.e., that apk is the aggregate public key for the subset of signers in S given by

the bitvector b; all of the public keys in S are a subset of the list of public keys committed to
using C.

c’. The verifier using C, apk and the bitvector b checks if π is valid. It then verifies σ against apk
and accepts if both steps succeed.

5

With the above committee key scheme, if C and π are constant size, the communication cost
becomes O(1) + |T | bits instead of |T | public keys.

So far we have implicitly assumed validators have equal stakes. One can generalise our approach
above to validators with unequal stakes by including at 2.1, a’., a commitment to all stakes and
to 2.1, b’., a claimed total signing stake that can be proved by including, inside the SNARK, a
scalar product between stakes of the signing validators and the bitvector. The bitvector remains
part of the input as it is needed for ensuring accountability.

2.2 From CKS to Accountable Light Client

Below we sketch how a light client verifier uses our committee key scheme. Suppose that a light
client verifier residing on blockchain A wants to know some information infon about the state of
a blockchain B at block number n without having to download the entire blockchain B. Another
entity, a full node on blockchain B, who knows all the data on B and is following its consensus,
should be able to convince the light client verifier on blockchain A using a computational proof that
infon was indeed decided on B.

We assume that infon can be proven from a commitment to the state at block number n that
is signed by validators on B. In turn, we assume that this commitment is a block hash Hn. To
convince the light client verifier on A that Hn was decided on B, the full node needs to convince
the light client verifier that a threshold number t of validators on B from the current validator set
signed Hn, where t depends on the type of consensus. Byzantine fault tolerant based consensus
often uses t to be over 2/3 of the total number of validators.

Keeping Track of the Validator Set: A light client verifier on A must be initialised with a committee
key ck1 corresponding to the genesis validator set on B with key vector pk1. At the end of each
epoch on B, i.e., the time a validator set needs to be updated, the validators set of epoch i, with
key vector pki sign a message (i, ck i+1) where ck i+1 as a committee key is also a commitment to
the next epock’s validator set pki+1. The light client verifier on A keeps track of ck i for each epoch
on B. A light client proof for an epoch must include a committee key scheme proof that a bitvector
of validators, with a threshold number of 1s, with keys committed to in ck i signed (i, ck i+1). To
convince a light client verifier on A knowing only ck1 of a message infon in block n on B, all such
proofs up to the epoch containing block n must be included. For an incremental light client system,
such as one on a bridge, these validator set update proofs only need to be given once an epoch.

Proving the General Claim infon : Once the light client verifier on A is convinced of ckn−1 for the
epoch n−1 on B and at least t of the validators in epoch n−1 signed Hn, it needs a committee key
scheme proof for ckn and a bitfield with t ones that t validators signed Hn. Finally, such a proof
needs the opening of the commitment Hn to infon.

Accountability: Now suppose that a full node on B obtains a light client proof for a message infon

that contradicts a message info′
n it sees as decided by the blockchain B. Note that for our bridge

use case, all light client proofs will be both verified by the light client verifier on A as well as
publicly available on blockchain B. We say that such a contradiction occurs if and only if the pair
(infon, info

′
n) should have never been signed by an honest validator, and that any validators signing

such a pair can be punished. We call infon and info′
n incompatible messages.

In our example, an incompatible pair of messages should include distinct commitments (which, in
our case, are committee keys) to distinct validator sets (i, ck i+1) and (i, ck ′

i+1), with ck i+1 ̸= ck ′
i+1

and, similarly, distinct Hn and H ′
n.

6

If, as part of a light client proof received by the light client verifier on blockchain A, a message
containing a committee key was signed and this committee key/commitment does not correspond
to that epoch’s claimed validator set as agreed via the consensus in blockchain B, then, on some
previous epoch, the light client proof must have shown that the correct validator set signed the
wrong committee key/commitment for the next set which is a message incompatible with the correct
committee key/commitment signed on the actuall blockchain B. However, such a misbehaviour can
be caught and reported by the full node on B since, as mentioned before, the full node has access
both to the consensus outcome for every epoch on B, as well as, to every epoch’s light client proof.

Note that the accountability of our light client system instantiation relies, in turn, on the
accountability of the underlying consensus protocol. Indeed, our light client is accountable only
if signatures on incompatible messages are enough for consensus accountability (e.g., in Casper
FFG [22]). However, our light client system construction is not directly applicable to consensus pro-
tocols where forensics (such as in [49]) are required for accountability, e.g., Polkadot’s GRANDPA,
Section 4.1 [62]. If the consensus protocol is not accountable with signatures, then the consensus
protocol needs to be modified by adding another layer (e.g. ABC[30], Polkadot’s BEEFY [1]).

Efficiency Gain: If one follows an obvious approach to the problem described above using aggrega-
tion of BLS signatures and aims to convince the light client verifier that infon is decided, then one
needs to send O(v) public keys for each validator set change, where v is the upper bound on the size
of the validator set. Using our succinct committee key scheme, however, one requires only a constant
size commitment and a constanat size proof and v bits for each validator set change to convince
the light client verifier that infon was decided. Since a public key or a signature typically takes
100s of bits, our approach achieves much smaller proof sizes. Full efficiency details are available in
Section 3.

Formalisation: We give a formal model for the security properties of our accountable light client in
Appendix J.3.

2.3 Our Custom SNARKs

Here we discuss how we use custom SNARKs with efficient prover time to implement our committee
key scheme. While we achieved very fast proving time in our SNARKs implementation, this came
at the cost of not using a general purpose SNARK protocol, in turn leading to a more involved
security model and the necessity of additional security proofs.

The public inputs for our SNARKs are: an aggregate public key apk , a commitment C to the list of
public keys (pki)i∈T and a bitvector (bi)i∈T succinctly representing a subset S of public keys. Our
SNARKs provers output a proof that apk =

∑
i∈T bipki and that C is the commitment to the list

of public keys (pki)i∈T . However the list itself is a witness for the relations defining our SNARKs
and so the verifiers do not need it and do not have to parse or check anything based on this possibly
long list. We detail below two further optimisations of our custom SNARKs.

Commit-and-Prove SNARKs: Our SNARKs are an instance of commit-and-prove SNARKs (see
Section 2.4). The underlying commitment scheme used for computing the public input commitment
C is the same as the (polynomial) commitment scheme used in the rest of our SNARK(s). Hence,
we do not need to add a witness for C to the SNARK constraint system the same way we would
have to if our commitment scheme were, e.g., to use a hash function. The constraints for checking
a hash inside our custom SNARKs would increase the size of the constraint system so much that

7

it would lead to several orders of magnitude increase in our prover time. The trade-off for our
SNARKs design (i.e., with a commitment as part of the public input) is that we cannot use an
existing SNARK compiler as a black box.

Constraint System Simplicity: Our constraint system is simple enough such that our custom
SNARKs do not require a permutation argument or a matrix-vector product argument which gen-
eral proving systems need to bind together gates. In fact, the underlying circuit for our SNARKs
can be described as an affine addition gate with a couple of constraints added to avoid the incom-
pleteness of our addition formulae. This simplification leads to smaller proof sizes and faster proving
times.

2.4 Related Work

Naive Approaches and Their Use in Blockchains There are a number of approaches com-
monly used in practice to verifying that a subset of a large set signed a message.

Verify All Signatures One could verify a signature for each signing validator. This is what par-
ticipants do in protocols like Polkadot [20], with 297 validators (or Kusama with 1000 validators)
and Tendermint [19], which is frequently used with 100 validators). The Tendermint light client
system, which is accountable and uses the verification of all individual signatures approach, is used
in bridges in the IBC protocol [42]. This approach becomes prohibitively expensive for a light client
verifier when there are 1000s or millions of signatures.

Aggregatable Signatures One could use an aggregatable signature scheme like BLS [14,13] and reduce
this to verifying one signature, but that requires calculating an aggregate public key. This aggregate
key is different for every subset of signers and needs to be calculated from the public keys. This is
what Ethereum does, which currently has 415,278 validators. However for a light client verifier, it
is expensive to keep a list of 100,000s of public keys updated. As such only full nodes of Ethereum
use this approach and instead light clients verifiers of Ethereum [2] follow signatures of randomly
selected subsets of validators of size 512. This means that the resulting light client system is not
accountable because these 512 validators are only backed by a small fraction of the total stake.

Threshold Signatures Alternatively, a threshold signature scheme may be used, with one public key
for the entire set of validators. This approach was adopted by Dfinity [44]. Threshold signature
schemes used in practice use secret sharing for the secret key corresponding to the single public key.
This gives the schemes two downsides. Firstly, they require a communication-heavy distributed key
generation protocol for the setup which is difficult to scale to large numbers of validators. Indeed,
despite recent progress [46,44,41], it is still challenging to implement setup schemes for threshold
signatures across a peer-to-peer network with a large number of participants, which is what many
blockchain related use cases require. Moreover, such a setup may need repeating whenever the signer
set changes. Secondly, for secret sharing based threshold signature schemes, the signature does not
depend on the set of signers and so we cannot tell which subset of the validators did actually
sign, i.e., they are not accountable. Dfinity [44] uses a re-shareable BLS threshold signature, where
the threshold public key remains the same even when the validator set changes. Such a signature
scheme provides the light client verifier with a constant size proof, even over many validator set
changes, but means that the proof not only does not identify which particular set of validators
are misbehaving, but also we cannot say when this misbehaviour happened, i.e., which validator
set misbehaved. This is because the signature would be the same for any threshold subset of any
validator set.

8

It is worth noting that if a protocol has already implemented aggregatable BLS signatures, our
committee key scheme can be used without altering the consensus layer. Indeed, it may be easier
to alter a protocol that uses individual signatures to use aggregatable BLS signatures than to
implement threshold signatures from scratch because the latter requires waiting for an interactive
setup before making validator set changes.

Using SNARKs to Roll up Consensus Celo [63] and Mina [15] blockchains have associated
light client verifiers which allow their resource constrained users to efficiently and securely sync
from the beginning of the blockchain to the latest block.

Plumo [37] is the most relevant comparison to our scheme. It also tackles the problem we consider,
i.e., that of proving validator set changes. In more detail, Plumo uses a Groth16 SNARK [43] to
prove that enough validators signed a statement using BLS signatures from a set of the public keys.
In Celo [63], the blockchain that designed and plans to use Plumo, validators may change every
epoch which is about a day long and the Plumo’s SNARK iteratively proves 120 epochs worth of
validator set changes. Since in Celo there are no more than 100 validators in a validator set at
any one time, the respective public keys are used in plain as public input for Plumo’s SNARK, as
opposed to a succinct polynomial commitment in the case of our custom SNARKs. All of the above
increase the size of Plumo’s prover circuit. Since Plumo is designed to help resource constrained
light clients sync from scratch, it is not an impediment that the Plumo SNARK cannot be efficiently
generated, i.e., in real time. In the case of a light client verifier for bridges (i.e., the most resource
constrained application), we expect it to be in sync at all times and, by design, we care only
about one validator set change at a time. Our slimmed down and custom SNARK not only can be
generated in real time, but, also due to the use of specialised commitments schemes for public keys,
our validator sets can scale up to much larger sizes as well without impacting the efficiency of our
system.

Mina [15] achieves light clients with O(1) sized light client proofs using recursive SNARKs. This
requires some nodes have a large computational overhead to produce proofs. Also because this
requires verifying consensus with small circuits, they do not use the consensus paradigm discussed
above where a majority of validators sign, and instead use a longest chain rule version of proof of
stake [15]. Their protocol is not accountable because, as with Dfinity above, it is not possible to tell
from the proof which validators signed off on a fork, nor when this happened. Another downside is
that because the proof only shows the length of a chain (and its block density), similar to a Bitcoin
SPV proof, a light client needs to be connected to an honest node to tell if a block is in the longest
chain. If the client is connected to a single malicious node, it could be given a proof for a shorter
fork and not see any proofs of chains the fork choice rule would prefer.

Commit-and-Prove and Related Approaches Our custom SNARKs are an instance of the
commit-and-prove (CP) paradigm [52,27,11,33,26,25,8] which is a generalisation for zero-knowledge
proofs/arguments in which the prover proves statements about values that are committed. We em-
ploy this paradigm by using a commitment to a large dataset as part of the public input, in a similar
way to [33,26]. Other CP SNARK protocols ([26,7,25,8] consider having (ZK) SNARKs with por-
tions of their respective witnesses overlapping, a very different problem to ours. Hash-and-prove [33]
considers using hashes of a large input dataset as part of the public input for a SNARK. LegoS-
NARK [26] considers using commitments which work with the SNARK protocols more directly

9

and do not need an opening to be explicitly verified inside the SNARK. [26] claims a 5000x speedup
in proving time using this technique for Groth16 instead of hashing. Our custom schemes use a ver-
sion of this approach, using KZG polynomial commitments [50] as part of of the public inputs, and
we expect that several orders of magnitude for our proving time improvement over Celo’s Plumo
hash-based protocol come from this. Additionally, we also have a very simple constraint system that
would have a considerable increase in size if we hashed the input. Our formalism, which generalised
PLONK [38]’s polynomial protocols and compiler to work with polynomial commitments for the
input, is different from prior work on CP SNARKs.

In practice, commit-and-prove systems (for short, CP) can be used to compress a large data
structure and then prove something about its content (e.g., polynomial commitments [50], vector
commitments [28], accumulators [10]). CP schemes can also be used to decouple the publishing of
commitments to some data from the proof generation: each of these actions may be performed by
different parties or entities [6]. Finally, commitments can be used to make different proof systems
interoperable [26,7]. Our SNARKs have properties from the first two categories, however we could
not have simply re-used an existing argument system: by designing custom circuits and SNARKs,
we ensured improved efficiency for our use cases.

In the above context, ECLIPSE [8] presents a compiler that starts off with popular SNARKs
(e.g., Sonic [54], PLONK [38], Marlin [29]) and via a new general compilation method generates
CP-variants for these SNARKs. Our proposed compiler uses as a first step the standard PLONK
compiler. As a second step we simply re-cast the SNARK resulted in the first step as a SNARK
for a new relation. The security of the re-casting holds under mild conditions that deterministically
relate some polynomials processed by the verifier in the ranged polynomial protocol (before applying
PLONK compiler) to some public inputs. To our knowledge, our re-casting conditions are less
stringent than the conditions needed in [8].

We cannot use the ECLIPSE compilation technique either in full or in part to compile our
custom SNARKs since the types of NP relations derived after ECLIPSE compilation are simply
incompatible with ours. While in the case of ECLIPSE, the witnesses for the NP relations before
compilation remain witnesses also for the relations after compilation, in our case, some part of the
public input before compilation becomes witness after the re-casting of the SNARK for a new NP
relation. Thus, overall, ECLIPSE and the current work solve different problems. Our compilation
method requires only the PLONK compiler without additional computational steps so it is more
efficient than the one in [8].

Finally, Lunar [25] obtains CP-SNARKs with a universal and updatable SRS and presents ar-
gument systems for linking committed inputs to the polynomial commitments used in AHP-based
arguments. Lunar presents efficiency improvements compared to LegoSNARK [26], but Lunar and
ECLIPSE outperform each other in different contexts.

Another paradigm related to commit-and-prove is called hash-and-prove [33]: for large data
structures or simply data that is expensive to be handled directly by a computationally constrained
verifier, one can hash that data and then create a (succinct) proof for some verifiable computation
that uses the original, large, dataset. The notion of committee key scheme defined in this work
has both similarities to but also differences with regard to this paradigm. The similarities are that,
both the way we instantiate our committee key (i.e., using a polynomial commitment with a trusted

10

universal setup) and the way we instantiate our aggregate public key, can be generalised as some
form of (possibly deterministic) hash function. One difference is that the setup for the polynomial
commitment is the same as that from which the proving and verification key for our committee key
scheme are computed; thus our version of the hashes and the keys for the committee key scheme are
definitely not independent as in the case of hash-and-commit [33]. Finally, built into our definition
of committee key scheme and its security properties, we use a secure aggregatable signature scheme
which allows us to design and prove the security properties of our accountable light client(s). In
fact, to add some intuition to the fact that a committee key scheme is more than just a hash-
and-prove instance, we mention that our committee key scheme inherits an unforgeability property
from its aggregatable scheme sub-component. This is one property that as far as we are aware no
hash-and-prove scheme has.

When proving the security of our arguments, we use an extension of some of the more commonly
employed SNARK definitions which we call a “a hybrid model SNARK”. This resembles the existing
notion of SNARKs with online-offline verifiers as described in [33], where the verifier computation is
split into two parts: during the offline phase some computation (possibly of commitments) happens;
this computation takes some public inputs as parameters and, when not performed by the verifier,
it may also be performed (in part) by the prover. The online phase is the main computation
performed by the verifier. In the case of our hybrid model SNARKs, however, the input to the offline
counterpart described above (which we call the PartInput algorithm) may even be the witness or a
part of the witness for the respective relation. For our custom SNARKs, PartInput produces part
of the public input used by the verifier; since for our use case, PartInput does handle a portion of
the witness, this operation cannot be performed by the verifier for that relation. Moreover, in our
instantiation, PartInput produces computationally binding commitment schemes that are opened
by the prover. Both of these properties are not explicitly part of our general definition for hybrid
model SNARKs, but they are crucial and explicitly assumed and used in proving the security for
our compiler’s second step (see Appendix F).

3 Implementation

We implemented and benchmarked our custom SNARKs. The implementation allows us to evaluate
the performance of our SNARKs and serve as prototype for future deployment. The implementation
is open source and publicly available at https://github.com/CCS23-anonymous/light-client. It is
written in Rust and uses the Arkworks library.

Table 1 gives the prover and verifier time for the two SNARK schemes (basic accountable and packed
accountable, see Section 5) with v = n−1 = 210−1, v = n−1 = 216−1 and v = n−1 = 220−1 sign-
ers. The benchmarks were run on a 3.6GHz 16-core AMD Ryzen 9 5950X. Here v is the maximum
number of signers and n > v is the size of a multiplicative subgroup of the field (see Section 4.6).

These signer set sizes are approximately the range of the number of validators that we aimed our
implementation at e.g., the Kusama blockchain (https://kusama.network/). This network has 1000
validators which is also the number that Polkadot is aiming for, while Ethereum 2 has about 348,000
validators and it has been suggested that there will be no more than 219 [5].

At v = n − 1 = 1023, the prover can generate a proof in any scheme in well under a second,
which is short enough to generate a proof for every block in most prominent blockchains. Even for

11

https://github.com/CCS23-anonymous/light-client
https://kusama.network/

Scheme v = 210 − 1 v = 216 − 1 v = 220 − 1
prover verifier prover verifier prover verifier

Basic Accountable 112ms 11.6ms 2.96s 15.3ms 42.1s 89.7ms
Packed Accountable 157ms 12.5ms 4.1s 12.6ms 58.0s 14.2ms

Table 1: Proof and verifier times for the different schemes and numbers of signers

v = n − 1 = 220 − 1, the prover time is under 1 minute, when the time for an Ethereum 2 epoch
is 6 minutes, i.e., the period that validators sign messages for finality of the chain. For verification
time, the basic accountable scheme is slower, considerably so for larger sets of signers.

Table 2 gives the number of operations the prover and verifier use. Table 3 gives the proof con-
stituents and also the total proof and input sizes in bits. The basic accountable scheme’s verifier
performance at large numbers is slower because it includes O(n) field operations, which domi-
nate the running time, however at 1023 signers it gives the smallest size. The packed accountable
scheme, which includes O(n/λ) field operations, fairs better w.r.t. the verification benchmarks for
large signer sets. The prover is considerably slower for the latter scheme because it needs to do
additional operations. At larger signer sizes, the proof size is dominated by the bitfield.

Scheme Prover operations Verifier operations
Basic Accountable 12× FFT (n) + FFT (4n) + 9ME(n) 2P + 11E +O(n)F
Packed Accountable 18× FFT (n) + FFT (4n) + 12ME(n) 2P + 16E +O(n/λ+ log(n))F

Table 2: Expensive prover and verifier operations. FFT (M) is an FFT of size M. ME(M) is a
multi-scalar multiplication of size M . P is a pairing, E is a single scalar multiplication and F is a
field operation.
Scheme Proof Input Actual proof + input size in bits

v = 210 − 1 v = 216 − 1 v = 220 − 1

Basic Accountable 5G1,out + 5F 2G1,out + 1G1,inn + n bits 9088 73600 1056640
Packed Accountable 8G1,out + 8F 2G1,out + 1G1,inn + n bits 12544 77056 1060096

Table 3: Proof/input constituents and total proof/input size for implementation.

4 Preliminaries

We assume all algorithms receive an implicit security parameter λ. An efficient algorithm is one that
runs in uniform probabilistic polynomial time (PPT) in the length of its input and λ. We assume the
correct parameters for the curves, groups, pairings, the group generators, etc. have been generated
and shared with all parties before running any algorithm or protocol. A function f(λ) is negligible
in λ, written as negl(λ), if 1/f(λ) grows faster than any polynomial in λ and is overwhelming in λ
if 1 − f(λ) = negl(λ). poly(λ) is some polynomial in λ and e.w.n.p.means except with probability
negl(λ). We write y = A(x; r) when algorithm A on input x and randomness r, outputs y. We write
y ← A(x) for picking randomness r uniformly at random and setting y = A(x; r). We denote by |S|
the cardinality of set S. F<d[X] is the set of all polynomials of degree less than d over the field F.
For any integer n ≥ 1, we denote by [n] the set {1, . . . , n}.

12

4.1 Pairings

If E is an elliptic curve defined over a prime field Fp of large characteristic p, we denote by E(Fp) the
abelian group containing all the points (x, y) ∈ (Fp)

2 on the curve along with the point at infinity.
We will work with pairing friendly curves i.e., those with a secure [67,39] efficiently computable,
bilinear, non-degenerate mapping from a prime order subgroup of E(Fp) and a subgroup of the
curve over the extension field. We will work with a pairing-friendly two-chain, i.e., a pair of pairing
friendly elliptic curves Einn = E(Fp) (the inner curve) and Eout = E′(Fr) (the outer curve), such
that the pairing einn on Einn works on subgroups of order r. Fp is the base field of Einn = E(Fp) and
Fr is its scalar field. We write G1 ,inn , G2 ,inn , GT ,inn , G1 ,out , G2 ,out , GT ,out for cyclic subgroups
of Einn , E(Fpl),Fpk , Eout , E′(Frl′), Frk′ respectively for suitable l, k, l′, k′ with the two pairings
einn : G1 ,inn × G2 ,inn → GT ,inn and by eout : G1 ,out × G2 ,out → GT ,out . We write g1 ,inn , g2 ,inn ,
gT ,inn , g1 ,out , g2 ,out , gT ,out respectively for randomly chosen generators of these groups. We use
additive notation for group operations and write [x]1 ,inn = x·g1 ,inn , [x]2 ,inn = x·g2 ,inn . Concretely,
our implementation uses BLS12-377 [16] and BW6-761 [47] for Einn and Eout .

4.2 Secure Signature Aggregation

An aggregatable signature scheme (AS) compresses signatures using different signing keys into
one signature. In this work we use an aggregatable signature scheme making explicit use of the
proofs-of-possession (PoPs) [60]. Overall, for our concrete instantiation, we use aggregatable BLS
signatures with an efficient aggregation procedure, i.e., by adding together keys and by adding
together signatures, and we protect against rogue key attacks [60] using PoPs. This is in contrast to
other aggregation procedures that do not require PoPs for security but incur a higher computational
cost (e.g., due to the use of multi-scalar multiplication [13]). For our concrete use case of accountable
light clients systems, our efficient signature aggregation method results in a simple and more efficient
SNARK which compensates for the cost of having to work with PoPs.
Definition 1. (Aggregatable Signature Scheme) An aggregatable signature scheme consists of the
following tuple of algorithms (AS .Setup, AS .GenKeypair ,
AS .VerifyPoP , AS .Sign, AS .AggKeys, AS .AggSig, AS .Verify) such that for implicit security pa-
rameter λ:

– pp ← AS .Setup(auxAS): a setup algorithm that, given an auxiliary parameter auxAS , outputs
public protocol parameters pp.

– ((pk , πPoP), sk) ← AS .GenKeypair(pp): a key pair generation algorithm that outputs a secret
key sk , and the corresponding public key pk together with a proof of possession πPoP for the
secret key.

– 0/1← AS .VerifyPoP(pp, pk , πPoP): a public key verification algorithm that, given a public key
pk and a proof of possession πPoP , outputs 1 if πPoP is valid for pk and 0 otherwise.

– σ ← AS .Sign(pp, sk ,m): a signing algorithm that, given a secret key sk and a message m ∈
{0, 1}∗, returns a signature σ.

– apk ← AS .AggKeys(pp, (pki)
u
i=1): a public key aggregation algorithm that, given a vector of

public keys (pki)
u
i=1, returns an aggregate public key apk .

– asig ← AS .AggSig(pp, (σi)
u
i=1): a signature aggregation algorithm that, given a vector of signa-

tures (σi)
u
i=1, returns an aggregate signature asig.

– 0/1 ← AS .Verify(pp, apk ,m, asig): a signature verification algorithm that, given an aggregate
public key apk , a message m ∈ {0, 1}∗, and an aggregate signature σ, returns 1 or 0 to indicate
validity.

13

We say AS is an aggregatable signature scheme if it satisfies perfect completeness and unforge-
ability as standard security definitions (see appendix A for full details) and, additionally, perfect
completeness for aggregation defined below.

Perfect Completeness for Aggregation An aggregatable signature scheme AS has perfect com-
pleteness for aggregation if, for every adversary A

Pr [AS .Verify(pp, apk ,m, asig) = 1 | pp ← AS .Setup(auxAS),

((pki)
u
i=1,m, (σi)

u
i=1)← A(pp),∀i ∈ [u],AS .Verify(pp, pki ,m, σi) = 1

apk ← AS .AggKeys(pp, (pk i)
u
i=1), asig ← AS .AggSigs(pp, (σi)

u
i=1)] = 1.

An Aggregatable Signature Instantiation In the following, we instantiate the aggregatable
signature definition given above with a scheme inspired by the BLS signature scheme [14] and its
follow-up variants [60,13].
Instantiation 1. (Aggregatable Signatures) For aggregatable signatures, our implementation uses
an instantiation of BLS signatures using proofs-of-possession which are G2 ,inn elements, where the
public keys are in G1 ,inn and the signatures are in G2 ,inn . The public key aggregation is a simple
sum of the public keys and the signature aggregation is a simple sum of the individual signatures.
We instantiate Einn with BLS12-377 [16]. Full details can be found in Appendix A.

4.3 Committee Key Scheme

Below we introduce the notion of committee key scheme for aggregatable signatures (CKS). This
notion, for an appropriate instantiation (Section 5.4), builds upon aggregatable signature schemes
(Section 4.2) allowing a prover to convince a verifier that an alleged aggregated signature for subset
of signers out of an all possible set of signers represented by a bitvector and a proof together with
a key summarising an all possible set of signers’ public keys (in the following called committee key)
are valid. The notion of CKS and its instantiation can be used, in turn, for an accountable light
client scheme instantiation (LCI) as sketched in Section 2.1. Before providing formal definition for
CKS , we include some intuition for its chosen security properties.

– Perfect completeness: If all of CKS .Verify inputs except for an aggregatable signature have
been generated honestly and if the signature is accepted by AS .Verify (Definition 1), then
CKS .Verify on the signature and honest inputs accepts; this is the counter-notion to perfect
completeness for aggregation (Definition 1); it is used for proving LCI perfect completeness.

– Soundness: An adversary cannot output a CKS verifying proof and alleged aggregated signature
pair without the aggregated signature being accepted by AS .Verify ; this property is crucial for
proving LCI accountability completeness.

– Unforgeability : It is similar to the underlying aggregatable signature scheme unforgeability and
it is a direct consequence of the signature’s scheme unforgeability and CKS soundness; it shows
CKS has further security properties beyond those of an argument system. CKS unforgeability
is used for proving LCI accountable soundness.

Definition 2. (Committee Key Scheme for Aggregatable Signatures) Let AS be an aggregatable
signature scheme that fulfils Definition 1. A committee key scheme for aggregatable signatures
consists of the following tuple of algorithms (CKS .Setup, CKS .GenCommitteeKey, CKS .Prove,
CKS .Verify) such that for implicit security parameter λ:

14

– (pp, rsvk , rspk) ← CKS .Setup(v): a setup algorithm that, given an upper bound v ∈ N, v =
poly(λ) outputs some public parameters pp and proving and verification keys rspk and rsvk ,
respectively, where pp ← AS .Setup(auxAS), for some auxAS chosen by the aggregated signature
AS .

– ck ← CKS .GenCommitteeKey(rspk , (pki)
u
i=1): a committee key generation algorithm that, given

a proving key rspk and a list of public keys, outputs a committee key ck , where u ≤ v.

– (π, ck) ← CKS .Prove(rspk , (pki)
u
i=1, (biti)

u
i=1): a proving algorithm that, given a proving key

rspk , a list of public keys and a bitvector (biti)
u
i=1 ∈ {0, 1}u, outputs a proof π, where u ≤ v;

moreover, ck is generated using CKS .GenCommitteeKey(rspk , (pki)
u
i=1).

– 0/1← CKS .Verify(pp, rsvk , ck ,m, asig , π,bitvector): a verification algorithm that, given pub-
lic parameters pp, a verification key rsvk , a committee key ck , a message m, a signature asig, a
proof π and a vector bitvector ∈ {0, 1}∗, outputs 1 if the verification succeeds and 0 otherwise.

We say (CKS .Setup, CKS .GenCommitteeKey, CKS .Prove, CKS .Verify) is a committee key scheme
for aggregatable signatures if it satisfies perfect completeness and soundness as defined below.

Perfect Completeness A committee key scheme for aggregatable signatures
(CKS .Setup, CKS .GenCommitteeKey, CKS .Prove, CKS .Verify) has perfect completeness if for
any message m ∈ {0, 1}∗, for any vector of public keys (pki)ui=1 generated using AS .GenKeypair(pp),
for any bitmask (biti)

u
i=1 ∈ {0, 1}u, for any aggregated signature asig, it holds that:

Pr [AS .Verify(pp, apk ,m, asig) = 1 =⇒ CKS .Verify(pp, rsvk , ck ,m, asig , π, (bit i)
u
i=1) = 1|

(pp, rsvk , rspk)← CKS .Setup(v), (π, ck)← CKS .Prove(rspk , (pk i)
u
i=1, (biti)

u
i=1),

apk ← AS .AggKeys(pp, (pk i)i:biti=1)] = 1.

Soundness A CKS for aggregatable signatures
(CKS .Setup, CKS .GenCommitteeKey, CKS .Prove, CKS .Verify) has soundness if for every effi-
cient adversary A it holds that:

Pr [CKS .Verify(pp, rsvk , ck ,m, asig , π, (bit i)
u
i=1) = 1 =⇒

=⇒ AS .Verify(pp, apk ,m, asig) = 1 | (pp, rsvk , rspk)← CKS .Setup(v),

(pk i)
u
i=1, (bit i)

u
i=1, asig , π,m← A(pp, rsvk , rspk),

ck ← CKS .GenCommitteeKey(rspk , (pk i)
u
i=1),

apk ← AS .AggKeys(pp, (pk i)i:biti=1)] = 1− negl(λ).

Next, we define unforgeability which ensures that an adversary cannot forge a verifying aggregatable
signature with a corresponding bitmask and a committee key that includes an honestly generated
public key.

Unforgeability For a committee key scheme for aggregatable signatures
(CKS .Setup, CKS .GenCommitteeKey , CKS .Prove, CKS .Verify) the advantage of an adversary A
against unforgeability is defined by

15

Adv forgecomkey
A (λ) = Pr[Gameforgecomkey

A (λ) = 1], where

Gameforgecomkey
A (λ) :

(pp, rsvk , rspk)← CKS .Setup(v),

((pk∗, π∗
PoP), sk

∗)← AS .GenKeypair(pp), Q← ∅
((pki , πPoP,i)

u
i=1, (biti)

u
i=1, asig , π,m)← AOSign(pp, rsvk , rspk , (pk

∗, π∗
PoP))

If (∄i ∈ [u], pk∗ = pki ∧ biti = 1) ∨m ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

ck ← CKS .GenCommitteeKey(rspk , (pki)
u
i=1)

Return CKS .Verify(pp, rsvk , ck ,m, asig , π, (biti)
u
i=1)

and

OSign(mj) :

σj ← AS .Sign(pp, sk∗,mj);Q← Q ∪ {mj};Return σj

A committee key scheme for aggregatable signatures is unforgeable if for all efficient adversaries A
it holds that Adv forgecomkey

A (λ) ≤ negl(λ).

Corollary 1. Let AS be an aggregatable signature scheme that fulfils definition 1. If CKS is a
committee key scheme for aggregatable signatures that fulfils Definition 2, then CKS is unforgeable,
as defined above.

Proof Sketch. Assume by contradiction there exists an efficient adversaryA such that Adv forgecomkey
A (λ)

is non-negligible. Using A and the soundness property of a committee key scheme, one can construct
in a straightforward manner an efficient adversary A′ such that Adv forge

A′ (λ) ≥ Adv forgecomkey
A (λ)−

negl(λ). This, in turn, implies that Adv forge
A′ is non-negligible which contradicts the unforgeability

property of aggregatable signature scheme AS . Thus, our assumption is false and our statement
holds.

4.4 Conditional NP Relations

By R = {(x;w) : p(x,w) = 1} we denote the binary relation such that (x,w) fulfil predicate
p(x,w) = 1. We say R is an NP relation if predicate p can be checked in polynomial time in the
length of both inputs x and w and
L(R) = {x | ∃w s.t. (x,w) ∈ R} is an NP language w.r.t. predicate p. In such a case we call x an
instance and w a witness.

In this work, we design two custom SNARKs for two specific NP relations that are shaped by
necessities of constructing our light client model and its instantiation. To model a specific property
of our NP relations, we introduce further notation which we call conditional NP relation, we denote
it by

Rc = {(x;w) : (p1(x,w) = 1 | c(x,w) = 1) ∧ p2(x,w) = 1}
and we interpret it as the NP relation containing the pairs of inputs and witnesses (x,w) such that
c(x,w) = 1, p1(x,w) = 1 and p2(x,w) = 1 hold. However, to prove that (x,w) ∈ Rc we assume/take

16

it as a given that c(x,w) = 1 and we are left to prove only that p1(x,w) = 1 and p2(x,w) = 1
hold. The reason we separate predicate c(x,w) from predicate p1(x,w) in the definition of Rc is
that predicate c(x,w) may be inefficient to prove inside a proof system (e.g., in our case, inside a
SNARK); using the above separation, one can delegate the verification of c(x,w) to a trusted party.
We explicitly include in the definition of any NP relation R or Rc the corresponding domain for
each type of public input and that input is parsed by the honest parties without additional checks.
When we make a statement about an NP relation we can interpret that as one about a conditional
relation Rc, where c is the predicate that always outputs 1.

4.5 SNARKs

For proving some security properties in this work, we define and use an extension of commonly em-
ployed SNARKs definitions. We call our new notion hybrid model SNARK. Our SNARK definition
is related to the notion of SNARKs with online-offline verifiers [33] where the verifier’s computation
is split into two parts; however it differs from that since in our case the second part of the verifier’s
computation is replaced by some portion of public input. In turn, the public input portion may
depend on the witness of some NP relation, hence that portion cannot be calculated by the respec-
tive verifier himself, and, is computed instead by some (deterministic) process, external to both the
prover and the verifier involved. We describe hybrid model SNARKs in full in Appendix B and we
use them for the security proof in Appendix F.

4.6 Polynomial Protocols, Polynomial Commitments and Lagrange Bases

To prove the security of our custom SNARKs, we start by defining custom vector-based condi-
tional NP relations and we describe for each of them a ranged polynomial protocol. Extending the
notion introduced in PLONK [38], we give an updated definition of ranged polynomial protocols
in Appendix C with the main difference being that our new type of polynomial protocol verifier
can contribute its own polynomials or simply finite field elements based on computations involving
public input and the verifier’s public randomness. Thus, our extended definition allows for a wider
space of polynomial protocols, which, in turn necessary for modelling and proving security of our
custom SNARKs. We also use KZG polynomial commitments [50], their batched version and their
security definitions as described in PLONK.

Lagrange Bases For finite field F we denote by H a subgroup of the multiplicative group of F such
that n = |H| is a large power of 2. Let ω be an n-th root of unity in F such that ω is a generator of
H. A Lagrange base is the polynomial set {Li(X)}0≤i≤n−1, where ∀i, 0 ≤ i ≤ n − 1, Li(X) is the
unique polynomial in F<n[X] s. t. Li(ω

i) = 1 and Li(ω
j) = 0,∀j ̸= i. We denote by block a power

of 2 such that block < n and use block for defining one of our conditional NP relations in Section 5.
We assume n = poly(λ) and block = Θ(λ) and |F| = 2Θ(λ).

5 Custom SNARKs for Aggregation

In this section we motivate the construction of two related SNARKS, each of them allowing a prover
to convince an efficient verifier that an alleged aggregated public key has indeed been computed
correctly as an aggregate of a vector of public keys for which two succinct commitments (to the x and
y affine coordinates of points) are publicly known. The differences between the two constructions

17

stem from how a bitvector with one bit associated to each public key (necessary to signal the
inclusion or omission of the respective public key w.r.t. the aggregate key) is used as part of the
verifier’s public input. We describe a basic accountable SNARK (the bitvector is represented as
a sequence of 0/1 field elements) and a packed accountable SNARK (the bitvector is partitioned
into equal blocks of consecutive binary bits which are represented by one field element per block).
We finally re-cast our basic and packed accountable SNARKs into SNARKs for specific types of
conditional NP relations necessary for modelling and building accountable light client systems.
To compile our desired SNARKs we proceed as follows:

– In Sections 5.1 and 5.2 we define vector-based conditional NP relations Rincl
ba (i.e., basic ac-

countable) and Rincl
pa (packed accountable) and we design two ranged polynomial protocols for

these relations. The ranged polynomial protocol notion originates in [38]; we review it and define
a refinement of it in Appendix C;

– In Appendix F we define a two-steps PLONK-inspired compiler which we use to compile the
ranged polynomial protocols into SNARKs for two novel mixed vector and trusted polynomial
commitments conditional NP relations which we denote by Rincl

ba,com and Rincl
pa,com , respectively.

– In Section 5.4 we give an instantiation for committee key scheme for aggregatable signatures
which uses our custom SNARKs (obtained using our two-step compiler) and our instantiation
for BLS aggregatable signatures from Appendix A.

We define our two specific conditional NP relations over F, i.e., the base field of Einn . Our SNARKs
provers’ circuits are defined as well over F as the scalar field of Eout . The vector of public keys,
which is part of the public input for both of our relations Rincl

ba and Rincl
pa , and is denoted by

pk = (pk0 , . . . , pkn−2), is a vector of pairs with each component in F. This vector has size n− 1 (n
defined in Section 4.6). For Rincl

ba we denote the n components bitvector by bit = (bit0 , . . . , bitn−1)
(meaning that each component belongs to the set {0, 1} ⊂ F), while the Rincl

pa relation is defined
using the compacted bitvector b′ = (b′0 , . . . , b

′
n

block−1) of n
block field elements, each of which is block

binary bits long (block has been defined in Section 4.6). Each of the bits in the bit representation
of these field elements signals the inclusion (or exclusion) of the index-wise corresponding public
keys into the aggregated public key apk . The last bit of field element b′ n

block−1 as well as the n-th
component bitn−1 do not correspond to any public key, but, as will become clear in the following,
they have been included for easier design of constraints.
We denote by H the multiplicative subgroup of F generated by ω as defined in Section 4.6. We

denote by incl(a0, . . . , an−2) the inclusion predicate that checks if (a0, . . . , an−2) ∈ Gn−1
1 ,inn . Moreover

let h = (hx , hy) be some fixed, publicly known element in Einn \G1 ,inn . In case this is not possible,
we chose h according to Appendix D. Finally, we denote by (ax, ay) the affine representation in x
and y coordinates of a ∈ Einn and by ⊕ the point addition in affine coordinates on the elliptic curve
Einn . We denote B = {0, 1} ⊂ F. We denote by [s] · ecp the multiplication of an elliptic curve point
ecp by the scalar s.

5.1 Basic Accountable Protocol

Conditional Basic Accountable Relation Rincl
ba

Rincl
ba = {(pk ∈ (F2)n−1,bit ∈ Bn, apk ∈ F2;_) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn}

where pk = (pk0 , . . . , pkn−2) and bit = (bit0 , . . . , bitn−1).

18

Next, we introduce the following Lagrange interpolation polynomials of degree at most n− 1 = |H|
over cyclic group H (Section 4.6): b(X) - interpolates the bits of bitvector bit ; pkx(X), pky(X) - in-
terpolate all public keys’ x and y coordinates, respectively; kaccx(X), kaccy(X) - interpolate x and
y coordinates, respectively, of the iterative partial aggregate sum of the actual signing validators’
public keys. We also define five polynomial identities id1(X), . . . , id5(X) supporting the following
intuition: id1(X), id2(X) ensure the x and, respectively, the y coordinates of the iterative partial
aggregate sums of actual signing validators public keys (up to each index i ≤ n−2) follow formulas
(∗), (∗∗) from Observation 3 which gives all possible cases of complete curve point addition when
the second curve point is multiplied by a bit; id3(X), id4(X) ensure first partial aggregate sum is
h and the total aggregate sum is h ⊕ apk ; this is necessary in order to ensure the addition of the
public keys (i.e., elliptic curve points) never falls into condition (3) defined in Observation 3, which
recursively implies the partial aggregate sum at every step is a well defined curve point, hence, it
is a suitable input for the next step consisting of an elliptic curve addition; id5(X) ensures b(X)
evaluates to bits over H. Together, id1(X) to id4(X) define the H-ranged polynomial protocol
Pba for relation Rincl

ba ; id5(X) will be used to prove a more general result, applicable also for the
H-ranged polynomial protocol Ppa for relation Rincl

pa (Section 5.2). In more detail, we have:

Polynomials as Computed by Honest Parties

b(X) =
n−1∑
i=0

biti · Li(X); pkx(X) =
n−2∑
i=0

pkxi · Li(X); pky(X) =
n−2∑
i=0

pkyi · Li(X)

kaccx(X) =
n−1∑
i=0

kaccxi · Li(X); kaccy(X) =
n−1∑
i=0

kaccyi · Li(X),

where (pkx0 , . . . , pkxn−2) and (pky0 , . . . , pkyn−2) are computed such that
∀i ∈ {0, . . . , n− 2}, pki is interpreted as a pair (pkxi , pkyi) with its components in F; we also have

(kaccx0 , kaccy0) = (hx , hy)

(kaccxi+1 , kaccyi+1) = (kaccxi , kaccyi)⊕ biti(pkxi , pkyi),∀i < n− 1.

Polynomial Identities

id1(X) =(X − ωn−1)·
· [b(X) · ((kaccx(X)− pkx(X))2 · (kaccx(X) + pkx(X) + kaccx(ω ·X))−
− (pky(X)− kaccy(X))2) + (1− b(X)) · (kaccy(ω ·X)− kaccy(X))].

id2(X) =(X − ωn−1)·
· [b(X) · ((kaccx(X)− pkx(X)) · (kaccy(ω ·X) + kaccy(X))−
− (pky(X)− kaccy(X)) · (kaccx(ω ·X)− kaccx(X)))+

+ (1− b(X)) · (kaccx(ω ·X)− kaccx(X))].

id3(X) =(kaccx(X)− hx) · L0(X) + (kaccx(X)− (h⊕ apk)x) · Ln−1(X).

id4(X) =(kaccy(X)− hy) · L0(X) + (kaccy(X)− (h⊕ apk)y) · Ln−1(X).

id5(X) =b(X)(1− b(X)).

19

id5(X) is not strictly needed for defining ranged polynomial protocols forRincl
ba , but included here to

ease presentation and for consistency of results with those related to Rincl
pa described in Section 5.2.

H-ranged Polynomial Protocol Pba for Conditional NP Relation Rincl
ba describes the interaction of the

prover Ppoly, the verifier Vpoly and the trusted third party I in accordance to Definition 5 from
Appendix C.
Ppoly and Vpoly know public input bit ∈ Bn, pk ∈ (F2)n−1 and apk ∈ (F)2 which are interpreted
as per their domains.

1. Vpoly computes b(X), pkx(X), pky(X).
2. Ppoly sends polynomials kaccx(X) and kaccy(X) to I.
3. Vpoly asks I to check whether the following polynomial relations hold over range H

idi(X) = 0,∀i ∈ [4].

4. Vpoly accepts if I’s checks verify.

We show Pba is an H-ranged polynomial protocol for conditional NP relation Rincl
ba . For this, we

first prove:
Claim 2. Assume that ∀i < n− 1 such that bit i = 1, we have that

pki = (pkxi, pkyi) ∈ G1 ,inn .

If polynomial identities idi(X) = 0,∀i ∈ [5], hold over range H and the polynomial b(X) has been
constructed via interpolation on H such that

b(ωi) = bit i,∀i < n

then the following four properties hold:

bit i ∈ B = {0, 1} ⊂ F,∀i < n

(kaccx0, kaccy0) = (hx, hy)

(kaccxn−1, kaccyn−1) = (hx, hy)⊕ (apkx, apky)

(kaccxi+1, kaccyi+1) = (kaccxi, kaccyi)⊕ bit i(pkxi, pkyi),∀i < n− 1.

Proof. Everything but the last property in the claim is easy to derive from polynomial identities
id3(X) = 0, id4(X) = 0, id5(X) = 0 holding over H. To prove the remaining property, we remind
the incomplete addition formulae for curve points in affine coordinates, over elliptic curve in short
Weierstrasse form and state:

Observation 3. Suppose that bit ∈ {0, 1}, (x1, y1) is a point on an elliptic curve in short Weier-
strasse form, and, if bit = 1, so is (x2, y2). We claim that the following equations:

bit((x1 − x2)
2(x1 + x2 + x3)− (y2 − y1)

2) + (1− bit)(y3 − y1) = 0 (∗)
bit((x1 − x2)(y3 + y1)− (y2 − y1)(x3 − x1)) + (1− bit)(x3 − x1) = 0 (∗∗)

hold if and only if one of the following three conditions hold

20

1. bit = 1 and (x1, y1)⊕ (x2, y2) = (x3, y3) and x1 ̸= x2

2. bit = 0 and (x3, y3) = (x1, y1)
3. bit = 1 and (x1, y1) = (x2, y2)

4.

It is easy to see that each of the conditions (1),(2),(3) above implies equations (∗) and (∗∗). For
the implication in the opposite direction, if we assume that (∗) and (∗∗) hold, then

Case a: For bit = 0, the first term of each equation (∗) and (∗∗) vanishes, leaving us with y3−y1 = 0
and x3 − x1 = 0 which are equivalent to condition (2).

Case b: For bit = 1 and x1 = x2, by simple substitution in (∗) and (∗∗), we obtain y1 = y2, i.e.,
condition (3).

Case c: For bit = 1 and x1 ̸= x2, then we can substitute β = y2−y1

x2−x1
into equations (∗) and (∗∗),

leaving us with
x1 + x2 + x3 = β2 and y3 + y1 = β(x3 − x1).

which are the usual formulae for short Weierstrass form addition of affine coordinate points when
x1 ̸= x2 so this is equivalent to condition (1).

We apply the above Observation 3 by noticing that if id1(X) and id2(X) hold over H, then (∗) and
(∗∗) hold with (x1, y1) substituted by (kaccxi, kaccyi), (x2, y2) substituted by (pkxi, pkyi), (x3, y3)
substituted by (kaccxi+1, kaccyi+1) and bit substituted by bit i for 0 ≤ i ≤ n− 2 . Moreover, since
(kaccx0, kaccy0) = (hx, hy) ∈ Einn \ G1 ,inn and if (pkxi, pkyi) ∈ G1 ,inn whenever bit i = 1, then
∀i < n − 1 equations (∗) and (∗∗) obtained after the substitution defined above are equivalent
to either condition (1) or condition (2), but never condition (3), so the result of the sum (i.e.,
(kaccxi+1, kaccyi+1), 0 ≤ i ≤ n − 2) is, by induction, at each step a well-defined point on the
curve.

Corollary 2. Assume ∀i < n − 1 such that bit i = 1, pki = (pkxi, pkyi) ∈ G1 ,inn . If the poly-
nomial identities idi(X) = 0,∀i ∈ [4], hold over range H and biti ∈ B, ∀i < n − 1 and b(X) =∑n−1

i=0 biti · Li(X) then:

(kaccx0, kaccy0) = (hx, hy)

(kaccxn−1, kaccyn−1) = (hx, hy)⊕ (apkx, apky)

(kaccxi+1, kaccyi+1) = (kaccxi, kaccyi)⊕ biti(pkxi, pkyi),∀i < n− 1.

Proof. The proof follows trivially from the general result stated by Claim 2.

Lemma 1. Pba as described above is an H-ranged polynomial protocol for conditional NP relation
Rincl

ba .

Proof. If (bit,pk, apk) ∈ Rincl
ba holds, meaning that bit ∈ Bn and pk ∈ Gn−1

1 ,inn and

apk =

n−2∑
i=0

[biti] · pki

4 Note that under condition (3), (x3, y3) can be any point whatsoever, maybe not even on the curve. The
same holds true for (x2, y2) under the condition (2).

21

hold, then it is easy to see that the honest prover Ppoly in Pba will convince the honest verifier
Vpoly in Pba to accept with probability 1 so perfect completeness holds. For knowledge-soundness,
if the verifier Vpoly in Pba accepts, then the extractor E is trivial since Rincl

ba has no witness. We
need to show that if pk ∈ Gn−1

1 ,inn and the verifier in Pba accepts, then

(bit,pk, apk) ∈ Rincl
ba

holds, which given our definition for conditional relation is equivalent to proving that

apk =

n−2∑
i=0

[biti] · pki

holds. This is due to Corollary 2.

5.2 Packed Accountable Protocol

Here we describe the packed accountable protocol, which differs from the basic accountable protocol
given in Section 5.1, in that the verifier performs far fewer field operations. It achieves this by
partitioning the bitvector into field elements differently: instead of interpreting the bitvector as a
sequence of 0/1 field elements, it divides it into sequences of block bits which are interpreted as
field elements. Unpacking these to bits in the SNARK adds some complexity, but the verifier has
to deal with 1/block times fewer field elements and operations.

Let F|block| = {0, . . . , 2block−1}. Our conditional packed accountable relation Rincl
pa and the cor-

responding H-ranged polynomial protocol Ppa are:

Conditional Packed Accountable Relation Rincl
pa

Rincl
pa ={(pk ∈ (F2)n−1,b′ ∈ F

n
block

|block|, apk ∈ F2;bit) : apk =

n−2∑
i=0

[biti] · pki |

pk ∈ Gn−1
1 ,inn ∧ bit ∈ Bn ∧ b′j =

block−1∑
i=0

2i · bitblock·j+i ,∀j <
n

block
}

where b′ = (b′0, . . . , b
′
n

block−1).
New Polynomials as Computed by Honest Parties

aux(X) =

n−1∑
i=0

auxi · Li(X); ca(X) =

n−1∑
i=0

ca,i · Li(X); acca(X) =

n−1∑
i=0

acca,i · Li(X)

where auxi = 1 ∈ F if i is divisible with block and auxi = 0 ∈ F otherwise, ∀i < n and ca,i = 2k · rj ,
k = i mod block, j = i÷ block, ∀i < n (r ∈ F is introduced in protocol Ppa) and acca,i are compo-
nents of (0, bit0 · ca,0, bit0 · ca,0+ bit1 · ca,1, . . . ,

∑n−2
i=0 bit i · ca,i), where bit0 , . . . , bitn−1 represent the

first n bits of the concatenation of the binary representation of b′0 , . . . , b′ n
block−1 each padded with

0s if necessary, to have an individual length of block bits. With this definition of (bit0 , . . . , bitn−1),
b(X) remains the same as in Section 5.1.

22

New Polynomial Identities

id6(X) = ca(ω ·X)− ca(X) · Ln−1(X) · (2 + (
r

2block−1
− 2) · aux(ω ·X))− (1− r

n
block).

id7(X) = acca(ω ·X)− acca(X)− b(X) · ca(X) + sum · Ln−1(X).

where sum is a field element known to both Ppoly and Vpoly and will be defined below.

H-ranged Polynomial Protocol Ppa for Rincl
pa

Ppoly and Vpoly know public inputs b′ ∈ F
n

block

|block| and pk ∈ (F2)n−1 and apk ∈ F2 which are
interpreted as per their domains.

1. Vpoly computes pkx(X), pky(X) and aux(X).
2. Ppoly sends polynomials b(X), kaccx(X) and kaccy(X) to I.
3. Vpoly replies with a random value r chosen from F.
4. Vpoly computes sum as

∑ n
block−1
j=0 b′j · rj .5

5. Ppoly sends polynomials ca(X) and acca(X) to I.
6. Vpoly asks I to check that idi(x) = 0,∀x ∈ H,∀i ∈ [7] and accepts if I’s checks verify.

We show Ppa is an H-ranged polynomial protocol for Rincl
pa . First, we prove the following:

Claim 4. If polynomial identities id6(X) = 0, id7(X) = 0 hold over range H, then, e.w.n.p., we
have

ca,i = 2i mod block · ri÷block,∀i < n

and

sum =

n−1∑
i=0

bi · ca,i,

where bi = b(ωi),∀i < n.

If, additionally, identity id5(X) = 0 holds over H, r has been randomly chosen in F and
sum =

∑ n
block−1
j=0 b′jr

j holds (as computed by Vpoly) and biti ∈ B,∀i < n and

b′j =

block−1∑
k=0

2k · bitblock·j+k ,∀0 ≤ j ≤ n

block
− 1

holds (due to (b′0, . . . , b
′ n
block−1) being interpreted by Vpoly as in F

n
block

|block|), then e.w.n.p.,

bi = biti ,∀i < n.

5 Note that if b′j =
∑block−1

k=0 2k · bitblock·j+k , ∀j < n
block

and biti ∈ B, ∀i < n, then
∑n−1

i=0 2i mod block · ri÷block ·
bit i =

∑ n
block

−1

j=0 (
∑block−1

i=0 2k · bitblock·j+k) · rj =
∑ n

block
−1

j=0 b′j · rj .

23

Proof. We show the first part of the claim by proving by contradiction that ca,0 = 1 using the
Schwartz-Zippel Lemma, the fact that r has been randomly chosen, and, also the fact that n is
negligibly smaller than the size of F. Finally, we expand id7 (X) = 0 over H, sum the LHS and
the RHS, equate and obtain the desired property of sum. We show the second part of the claim by
expressing sum in two ways as

∑ n
block−1
j=0 b′jr

j and as
∑n−1

i=0 bi · ca,i and re-writing the latter as an
inner product of a vector of field elements with the vector (1, r, . . . , r

n
block−1) and using the small

exponents test [9]. Full proof can be found in Appendix E.

Lemma 2. Ppa is an H-ranged polynomial protocol Rincl
pa .

Proof. The proof follows an analogous logic as used for proving Lemma 1. We additionally use
Claim 8 and Corollary 2. Full proof can be found in Appendix E.

5.3 Our Custom SNARKs

To design our accountable light client systems as introduced in Section 2.2 and fully detailed in
Appendix J, we need to further refine and then compile relations Rincl

ba and Rincl
pa (introduced

in Sections 5.1 and 5.2, respectively) into appropriate SNARKs such that the long public input
pk ∈ (F2)n−1 is replaced by a pair of succinct commitments and, pk becomes a witness for the
resulting refined relations. As far as we are aware, such a compiler does not exist. Thus, we design
a two-step compiler to obtain SNARKs for relations with such properties. We are interested in
relations Rincl

ba,com and Rincl
pa,com , where Rincl

ba,com defined below and Rincl
pa,com defined in Appendix F.4.

Rincl
ba,com = {(C ∈ C,bit ∈ Bn, apk ∈ F2;pk) :

apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧ C = Com(pk)},

where C is a commitment from a set C of commitments and Com(pk) is a commitment to a specific
vector, namely pk.

The two-step compiler is described in Appendix F, with the first step being the standard PLONK
compiler (Section 4.7 of [38]) and the second step being amenable for compiling into SNARKs a
specific generalisation of the two NP relations just detailed above. In fact, the second compilation
step is simply a re-casting of the already compiled SNARKs in first step as SNARKs for new NP
relations based on both commitments and vectors of field elements. This re-casting is possible due
to a new security proof that holds under mild conditions. Overall, due to its generality, our two-
step compiler may be of independent interest for other projects as well. Full details can be found
in Appendix F.

5.4 Our Instantiation for CKS

Given relations Rincl
ba,com and Rincl

pa,com described in short in Section 5.3 (and in full in Appendix F),
we present an instantiation for committee key scheme defined in Section 4.3; this is used to build
an accountable light client system.

We instantiate u and v from Section 4.3 as u = n − 1, (n = |H| from Section 4.6) and v ∈
N, n− 1 ≤ v, v = poly(λ), where v is the maximum number of validators.

24

Instantiation 5. (Committee Key Scheme for Aggregatable Signatures) In our implementation we
use the following instantiation of Definition 2 for one of R ∈ {Rincl

ba,com ,Rincl
pa,com}:

– CKSR.Setup(v) calls algorithms:
1. pp ← AS .Setup(auxAS = v + 1) with AS .Setup part of Instantiation 7 and G1 ,inn part of

pp (see notation in Appendix A);
2. srs ← SNARK .Setup(auxSNARK = (v, 3v)) with

srs = ([1]1 ,out , [τ]1 ,out , . . . , [τ
3v]1 ,out , [1]2 ,out , [τ]2 ,out);

3. (rspk , rsvk)← SNARK .KeyGen(srs,R) with
(rspk , rsvk) = (([1]1 ,out , [τ]1 ,out , . . . , [τ

3v]1 ,out), ([1]1 ,out , [1]2 ,out , [τ]2 ,out)) where the nota-
tion [. . .]1 ,out and [. . .]2 ,out was defined in Section 4.1.

– ck ← CKSR.GenCommitteeKey(rspk , (pki)
n−1
i=1),where CKSR.GenCommitteeKey first checks

whether (pki)n−1
i=1 ∈ Gn−1

1 ,inn ; if this does not hold, it outputs ⊥; otherwise, CKSR.GenCommitteeKey
continues as:
Let pkx = (pkx1 , . . . , pkxn−1), pky = (pky1 , . . . , pkyn−1), ∀i ∈ [n− 1], pki = (pkxi , pkyi) ∈ F2.
Let pkx(X) =

∑n−2
i=0 pkxi+1 · Li(X), pky(X) =

∑n−2
i=0 pkyi+1 · Li(X).

Let [pkx]1 ,out = pkx(τ) · [1]1 ,out , [pky]1 ,out = pky(τ) · [1]1 ,out .
Output ck = ([pkx]1 ,out , [pky]1 ,out).
Note that F and {Li(X)}n−2

i=1 are as defined in Section 4.6.
– (π, ck)← CKSR.Prove(rspk , (pki)

n−1
i=1 , (biti)

n−1
i=1) where π = (πSNARK , apk) and

ck ← CKSR.GenCommitteeKey(rspk , (pki)
n−1
i=1) and

apk =
∑n−1

i=1 biti · pki ← AS .AggregateKeys(pp, (pki)i:biti=1) as defined in Instantiation 7 and
πSNARK ← SNARK .Prove(rspk , (x,w),R), for R ∈ {Rincl

ba,com ,Rincl
pa,com} where{

(x = (ck , (biti)
n−1
i=1 ||0, apk), w = ((pk i)

n−1
i=1) if R = Rincl

ba,com ,

(x = (ck ,b′, apk), w = ((pk i)
n−1
i=1 , (biti)

n−1
i=1 ||0) if R = Rincl

pa,com ,

where b′ is the vector of field elements formed from blocks of size block of bits from vector
(biti)

n−1
i=1 ||0 and block is the highest power of 2 smaller than the size of a field element in F.

– 0/1 ← CKSR.Verify(pp, rsvk , ck ,m, asig , π,bitvector) parses π to retrieve πSNARK and apk
and it calls AS .Verify(pp, apk ,m, asig) as defined in Instantiation 7 and it also calls
SNARK .Verify(rsvk , x, πSNARK ,R) (where πSNARK , x and R are as defined in the item above
with the only difference that (biti)n−1

i=1 represents the first n− 1 bits of bitvector, padded with
0s, if not sufficiently many exist in bitvector); overall, the output is 1 if both algorithms output
1 and the output is 0 otherwise.

Theorem 6. The committee key scheme CKSR in Instantiation 5 is secure with respect to Defini-
tion 2.

Proof. We give a full proof in Appendix I.

6 Conclusions

In this work we have defined, designed, proved and implemented the first accountable light client
system. This is provably secure and very efficient and can be further integrated as the core building
block into secure bridges between SNARK friendly PoS blockchains. We plan to integrate our work
into a bridge between Polkadot and Kusama, as part of the Polkadot ecosystem.

25

7 Acknowledgements

We thank Handan Kılınç Alper and Dario Fiore for useful comments and feedback and for reviewing
drafts of this work.

References

1. Beefy, https://github.com/paritytech/grandpa-bridge-gadget/blob/master/docs/beefy.md
2. Minimal light client (2021), commit of 14th Sept 2021, https://github.com/ethereum/annotated-spec/

blob/master/altair/sync-protocol.md
3. Nomad loses $156 million in seventh major crypto bridge exploit of 2022 (2022), https://hub.elliptic.

co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
4. Over $1 billion stolen from bridges so far in 2022 as harmony’s horizon bridge becomes latest victim in

$100 million hack (2022), bit.ly/3fvlIME
5. Simplified active validator cap and rotation proposal (2022), https://ethresear.ch/t/

simplified-active-validator-cap-and-rotation-proposal/9022
6. ZKProof Community Reference. Version 0.3. Ed. by D. Benarroch, L. Brandao, M. Maller, and E.

Tromer. (2022), https://docs.zkproof.org/reference
7. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements.

In: CRYPTO 2018. pp. 643–673 (2018)
8. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: Eclipse:

Enhanced compiling method for pedersen-committed zksnark engines. Cryptology ePrint Archive, Paper
2021/934 (2021), https://eprint.iacr.org/2021/934, https://eprint.iacr.org/2021/934

9. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital
signatures. ePrint 1998/007 (1998)

10. Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In:
EUROCRYPT ’93. pp. 274–285 (1994)

11. Benarroch, D., Campanelli, M., Fiore, D., Kim, J., Lee, J., Oh, H., Querol, A.: Proposal: Commit-and-
prove zero-knowledge proof systems and extensions (2021), 4rd ZKStandards Workshop

12. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions.
In: STOC ’14. pp. 505–514 (2014)

13. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: ASIACRYPT
2018. pp. 435–464 (2018)

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: ASIACRYPT 2001. pp.
514–532 (2001)

15. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency at scale. ePrint
2020/352 (2020)

16. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling decentralized private
computation. In: Security and Privacy 2020. pp. 947–964 (2020)

17. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. ePrint
2019/1021 (2019)

18. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input. In: ASI-
ACRYPT 2015. pp. 236–261 (2015)

19. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on bft consensus (2018), https://arxiv.org/
abs/1807.04938

20. Burdges, J., Cevallos, A., Czaban, P., Habermeier, R., Hosseini, S., Lama, F., Alper, H.K., Luo, X.,
Shirazi, F., Stewart, A., Wood, G.: Overview of polkadot and its design considerations (2020), https:
//arxiv.org/abs/2005.13456

21. Buterin, V.: Minimal light client (2021), https://github.com/ethereum/annotated-spec/blob/master/
altair/sync-protocol.md

26

https://github.com/paritytech/grandpa-bridge-gadget/blob/master/docs/beefy.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
bit.ly/3fvlIME
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://docs.zkproof.org/reference
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/934
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/2005.13456
https://arxiv.org/abs/2005.13456
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md

22. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437 (2017),
https://arxiv.org/abs/1710.09437

23. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D., Sin, J., Wang, Y., Zhang,
Y.X.: Combining ghost and casper. arXiv (2020), https://arxiv.org/abs/2003.03052

24. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for cryptocurrencies. Cryptology
ePrint Archive, Paper 2019/226 (2019), https://eprint.iacr.org/2019/226

25. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodriguez, H.: Lunar: a toolbox for more efficient
universal and updatable zksnarks and commit-and-prove extensions. Cryptology ePrint Archive, Paper
2020/1069 (2020), https://eprint.iacr.org/2020/1069

26. Campanelli, M., Fiore, D., Querol, A.: Legosnark: Modular design and composition of succinct zero-
knowledge proofs. In: CCS’19. pp. 2075–2092 (2019)

27. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party
secure computation. In: STOC02 (2002)

28. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Public Key Cryptography 2013.
pp. 55–72 (2013)

29. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Preprocessing zksnarks with
universal and updatable srs. In: EUROCRYPT 2020. pp. 738–768 (2020)

30. Civit, P., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J.: As easy as abc: Optimal (a) ccountable
(b) yzantine (c) onsensus is easy! In: 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 560–570. IEEE (2022)

31. of Ethereum Magician, F., Herders, E.C.: Ethereum improvement proposals, https://eips.ethereum.org
32. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.

In: CRYPTO’ 86. pp. 186–194 (1987)
33. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue later:

Adaptive verifiable computations on outsourced data. In: CCS’16. pp. 1304–1316 (2016)
34. Foundation, N.: Rainbow bridge (Accessed 19012023), https://wiki.near.org/getting-started/

rainbow-bridge
35. Foundation, N.: Rainbow bridge faq (Accessed 19012023), https://rainbowbridge.app/faq
36. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: CRYPTO 2018.

pp. 33–62 (2018)
37. Gabizon, A., Gurkan, K., Jovanovic, P., Konstantopoulos, G., Oines, A., Olszewski, M., Straka, M.,

Tromer, E., Vesely, P.: Plumo: Towards scalable interoperable blockchains using ultralight validation
systems. 3rd ZKStandards Workshop (2020)

38. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. ePrint 2019/953 (2019)

39. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. ePrint 2006/165 (2006)
40. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What makes fiat–shamir zk-

snarks (updatable srs) simulation extractable? ePrint 2021/511 (2021)
41. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifiable secret sharing

with thousands of parties. ePrint 2021/1397 (2021)
42. Goes, C.: The interblockchain communication protocol: An overview (2020), https://arxiv.org/abs/

2006.15918
43. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT 2016. pp. 305–326

(2016)
44. Groth, J.: Non-interactive distributed key generation and key resharing. ePrint 2021/339 (2021)
45. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common ref-

erence strings with applications to zk-snarks. In: CRYPTO 2018. pp. 698–728 (2018)
46. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Aggregatable distributed

key generation. ePrint 2021/005 (2021)
47. Housni, Y.E., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves suitable for one layer

proof composition. ePrint 2020/351 (2020)

27

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/2003.03052
https://eprint.iacr.org/2019/226
https://eprint.iacr.org/2020/1069
https://eips.ethereum.org
https://wiki.near.org/getting-started/rainbow-bridge
https://wiki.near.org/getting-started/rainbow-bridge
https://rainbowbridge.app/faq
https://arxiv.org/abs/2006.15918
https://arxiv.org/abs/2006.15918

48. Housni, Y.E., Guillevic, A.: Bw6 over bls12-381 (2021), https://ethresear.ch/t/bw6-over-bls12-381/
10321

49. Kannan, S., Nayak, K., Sheng, P., Viswanath, P., Wang, G.: Bft protocol forensics (2020), https:
//arxiv.org/abs/2010.06785

50. Kate, A., Gregory M Zaverucha, I.G.: Constant-size commitments to polynomials and their applications.
In: ASIACRYPT10. pp. 177–194 (2010)

51. Kattis, A., Panarin, K., Vlasov, A.: Redshift: Transparent snarks from list polynomial commitment
iops. ePrint 2019/1400 (2019)

52. Kilian, J.: Uses of randomness in algorithms and protocols. PhD Thesis (1990), https://core.ac.uk/
download/pdf/4425126.pdf

53. Kwon, J., Buchman, E.: Cosmos whitepaper: A network of distributed ledgers, https://v1.cosmos.
network/resources/whitepaper

54. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks from linear-size uni-
versal and updateable structured reference strings. Cryptology ePrint Archive, Paper 2019/099 (2019),
https://eprint.iacr.org/2019/099

55. Mintscan: Validator dashboard for cosmos hub (Accessed 19012023), https://www.mintscan.io/cosmos/
validators

56. Mintscan: Validator dashboard for nyx (Accessed 19012023), https://www.mintscan.io/nyx/validators
57. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review p. 21260

(2008)
58. Organization, C.: Optics (Accessed 19012023), https://docs.celo.org/protocol/bridge/optics
59. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: EUROCRYPT ’96. pp. 387–398

(1996)
60. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty signatures against

rogue-key attacks. In: EUROCRYPT 2007. pp. 228–245 (2007)
61. SECBIT: How the winner got fomo3d prize — a detailed explanation (2018), https://medium.com/

coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
62. Stewart, A., Kokoris-Kogia, E.: Grandpa: a byzantine finality gadget (2020), https://arxiv.org/abs/

2007.01560
63. cLabs Team: The celo protocol: A multi-asset cryptographic protocol for decentralized social payments,

https://celo.org/papers/whitepaper
64. Team, T.D.: The internet computer for geeks (2022), https://internetcomputer.org/whitepaper.pdf
65. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum project

yellow paper (2014)
66. Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y., Boneh, D., Song, D.X.: zkbridge: Trustless

cross-chain bridges made practical. Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (2022)

67. Yonezawa, S.: Pairing-friendly curves (2020), https://tools.ietf.org/id/
draft-yonezawa-pairing-friendly-curves-02.html

28

https://ethresear.ch/t/bw6-over-bls12-381/10321
https://ethresear.ch/t/bw6-over-bls12-381/10321
https://arxiv.org/abs/2010.06785
https://arxiv.org/abs/2010.06785
https://core.ac.uk/download/pdf/4425126.pdf
https://core.ac.uk/download/pdf/4425126.pdf
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://eprint.iacr.org/2019/099
https://www.mintscan.io/cosmos/validators
https://www.mintscan.io/cosmos/validators
https://www.mintscan.io/nyx/validators
https://docs.celo.org/protocol/bridge/optics
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://arxiv.org/abs/2007.01560
https://arxiv.org/abs/2007.01560
https://celo.org/papers/whitepaper
https://internetcomputer.org/whitepaper.pdf
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html

Appendices

A Aggregatable Signature Scheme Definition

Definition 3. (Aggregatable Signature Scheme) An aggregatable signature scheme consists of the following tu-
ple of algorithms (AS .Setup, AS .GenKeypair , AS .VerifyPoP , AS .Sign, AS .AggKeys, AS .AggSigs, AS .Verify)
such that for implicit security parameter λ:

– pp ← AS .Setup(auxAS): a setup algorithm that, given an auxiliary parameter auxAS , outputs public protocol
parameters pp.

– ((pk , πPoP), sk) ← AS .GenKeypair(pp): a key pair generation algorithm that outputs a secret key sk , and
the corresponding public key pk together with a proof of possession πPoP for the secret key.

– 0/1 ← AS .VerifyPoP(pp, pk , πPoP): a public key verification algorithm that, given a public key pk and a
proof of possession πPoP , outputs 1 if πPoP is valid for pk and 0 otherwise.

– σ ← AS .Sign(pp, sk ,m): a signing algorithm that, given a secret key sk and a message m in {0, 1}∗, returns
a signature σ.

– apk ← AS .AggKeys(pp, (pki)
u
i=1): a public key aggregation algorithm that, given a vector of public keys

(pki)
u
i=1, returns an aggregate public key apk .

– asig ← AS .AggSigs(pp, (σi)
u
i=1): a signature aggregation algorithm that, given a vector of signatures (σi)

u
i=1,

returns an aggregate signature asig.
– 0/1 ← AS .Verify(pp, apk ,m, asig): a signature verification algorithm that, given an aggregate public key

apk , a message m ∈ {0, 1}∗, and an aggregate signature σ, returns 1 or 0 to indicate if the signature is
valid.

We say (AS .Setup, AS .GenKeypair , AS .VerifyPoP , AS .Sign, AS .AggKeys, AS .AggSigs, AS .Verify) is an
aggregatable signature scheme if it satisfies perfect completeness and perfect completeness for aggregation and
unforgeability as defined below.
Perfect Completeness An aggregatable signature scheme AS has perfect completeness if for any message
m ∈ {0, 1}∗ and any u ∈ N it holds that:

Pr [AS .Verify(pp, apk ,m, asig) = 1 ∧ (∀i ∈ [u],AS .VerifyPoP(pp, pki , πPoP,i) = 1) | pp ← AS .Setup(auxAS),

∀i ∈ [u], ((pki, πPoP,i), ski)← AS .GenerateKeypair(pp), apk ← AggregateKeys(pp, (pk i)
u
i=1),

∀i ∈ [u], σi ← AS .Sign(pp, ski ,m), asig ← AS .AggregateSignatures(pp, (σi)
u
i=1)] = 1.

We note that an aggregatable signature scheme with perfect completeness implies the underlying signature scheme
has perfect completeness.

Perfect Completeness for Aggregation An aggregatable signature scheme AS has perfect completeness for
aggregation if, for every adversary A

Pr [AS .Verify(pp, apk ,m, asig) = 1 | pp ← AS .Setup(auxAS), ((pki)
u
i=1,m, (σi)

u
i=1)← A(pp),

∀i ∈ [u],AS .Verify(pp, pki ,m, σi) = 1, apk ← AS .AggKeys(pp, (pk i)
u
i=1), asig ← AS .AggSigs(pp, (σi)

u
i=1)] = 1.

Unforgeable Aggregatable Signature For an aggregatable signature scheme AS, the advantage of an adver-
sary against unforgeability is defined by

Adv forge
A (λ) = Pr [GameforgeA (λ) = 1]

29

where

GameforgeA (λ) :

pp ← AS .Setup(auxAS)

((pk∗, π∗
PoP), sk

∗)← AS .GenerateKeypair(pp)

Q← ∅
((pki , πPoP,i)

u
i=1,m, asig)← AOSign(pp, (pk∗, π∗

PoP))

If pk∗ /∈ {pki}ui=1 ∨m ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

apk ← AS .AggKeys(pp, (pki)
u
i=1)

Return AS .Verify(pp, apk ,m, asig)

and

OSign(mj) :

σj ← AS .Sign(pp, sk∗,mj)

Q← Q ∪ {mj}
Return σj

and AOSign denotes the adversary A with access to oracle OSign.

We say an aggregatable signature scheme is unforgeable if for all efficient adversaries A it holds that

Adv forge
A (λ) ≤ negl(λ).

An Aggregatable Signature Instantiation In the following, we instantiate the aggregatable signature
definition given above with a scheme inspired by the BLS signature scheme [14] and its follow-up variants [60,13].

Instantiation 7. (Aggregatable Signatures) In our implementation we call aggregatable signatures the following
instantiation of aggregatable signatures definition. Note that in our implementation we instantiate Einn with
BLS12-377 [16].

– (G1 ,inn , g1 ,inn ,G2 ,inn , g2 ,inn ,GT ,inn , einn ,Hinn ,HPoP) from pp where pp ← AS .Setup(auxAS), where
G1 ,inn , g1 ,inn , G2 ,inn , g2 ,inn , GT ,inn , einn were defined in Section 4.1 and Hinn : {0, 1}∗ → G2 ,inn and
HPoP : {0, 1}∗ → G2 ,inn are two hash functions. The auxiliary parameter auxAS is such that there exists
N ∈ N, N is the first component of the vector auxAS and there exists a subgroup of size at least N in the
multiplicative group of F, where F is the base field of Einn , but also the size of the subgroup ∈ O(N).

– (pk , sk , πinn)← AS .GenKeypair(pp), where sk
$←− Z∗

r and pk = sk ·g1 ,inn ∈ G1 ,inn and πinn ← sk ·HPoP (pk)
and r was defined in Section 4.1 as the characteristic of the scalar field of Einn .

– 0/1← AS .VerifyPoP(pp, pk , πinn), where AS .VerifyPoP outputs 1 if

einn(g1 ,inn , πinn) = einn(pk ,HPoP (pk))

holds and 0 otherwise. Note that implicitly, as part of running AS .VerifyPoP , one checks that pk ∈ G1 ,inn

also holds.
– σ ← AS .Sign(pp, sk ,m): where σ = sk ·Hinn(m) ∈ G2 ,inn .
– apk ← AS .AggKeys(pp, (pki)

u
i=1), where apk =

∑u
i=1 pki . Note that AS .AggKeys checks whether

((pki)
u
i=1) ∈ Gu

1 ,inn(∗)

and, if that is not the case, it outputs ⊥; if (∗) holds, the algorithm AS .AggKeys continues with the compu-
tations described above.

– asig ← AS .AggSigs(pp, (σi)
u
i=1), where asig =

∑u
i=1 σi.

– 0/1← AS .Verify(pp, apk ,m, asig), where AS .Verify outputs 1 if apk ̸= ⊥ and apk ∈ G1 ,inn and

einn(apk ,Hinn(m)) = einn(g1 ,inn , asig);

otherwise, it outputs 0.

30

B Hybrid Model SNARKS

When proving the security of our arguments, we use an extension of some of the more commonly employed
SNARK definitions which we call a “a hybrid model SNARK”. This resembles the existing notion of SNARKs
with online-offline verifiers as described in [33], where the verifier computation is split into two parts: during
the offline phase some computation (possibly of commitments) happens; this computation takes some public
inputs as parameters and, when not performed by the verifier, it may also be performed (in part) by the prover.
The online phase is the main computation performed by the verifier. In the case of our hybrid model SNARKs,
however, the input to the offline counterpart described above (which we call the PartInput algorithm) may even
be the witness or a part of the witness for the respective relation. For our custom SNARKs, PartInput produces
part of the public input used by the verifier; since for our use case, PartInput does handle a portion of the
witness, this operation cannot be performed by the verifier for that relation. Moreover, in our instantiation,
PartInput produces computationally binding commitment schemes that are opened by the prover. Both of these
properties are not explicitly part of our general definition for hybrid model SNARKs, but they are crucial and
explicitly assumed and used in proving the security for our compiler’s second step (see Appendix F). Intuitively,
our commitments are the counterpart CP-SNARK subcomponent of a that computes a commitment (to part of
the witness) linking different CP-SNARKs together. We do not need such a strong property of linking SNARKs;
the commitments are used in our case for the efficiency they bring to the prover/ overall system.

The two SNARKs we design in this work have access to a structured reference string (srs) of the form

({[τ i]1}di=0, {[τ i]2}1i=0)

where τ is a random (and allegedly secret) value in F and d is bounded by a polynomial in λ. Such an srs
is universal and updatable [45]. We introduce a generalisation of the usual SNARK definition which we call a
hybrid model SNARK inspired by online-offline SNARKs [33]. We further refine it as described below:

Definition 4. (Hybrid Model SNARK) A hybrid model succinct non-interactive argument of knowledge for
relation R is a tuple of PPT algorithms (SNARK .Setup,SNARK .KeyGen,SNARK .Prove,SNARK .Verify ,
SNARK .PartInputs) such that for implicit security parameter λ:

– srs ← SNARK .Setup(auxSNARK): a setup algorithm that on input auxiliary parameter auxSNARK from
some domain D outputs a universal structured reference string tuple srs,

– (srspk , srsvk) ← SNARK .KeyGen(srs,R): a key generation algorithm that on input a universal structured
reference string srs and an NP relation R outputs a proving key and a verification key pair (srspk , srsvk),

– π ← SNARK .Prove(srspk , (x,w),R): a proof generation algorithm that on input a proving key srspk and a
pair (x,w) ∈ R outputs proof π,

– 0/1 ← SNARK .Verify(srsvk , x, π,R): a proof verification algorithm that on input a verification key srsvk ,
an instance x and a proof π outputs a bit that signals acceptance (if output is 1) or rejection (if output is
0),

– (x1, state2) ← SNARK .PartInputs(srs, state1,R): a deterministic public inputs generation algorithm that
takes as input a universal structured reference string srs, an NP relation R and state state1 and outputs
updated state state2 and partial public input x1,

and satisfies completeness, knowledge soundness w.r.t. SNARK .PartInputs and succinctness as defined below:
Perfect Completeness holds if an honest prover will always convince an honest verifier: for all (x,w) ∈ R
and for all auxSNARK ∈ D

Pr [SNARK .Verify(srsvk , x, π,R) = 1 | srs ← SNARK .Setup(auxSNARK),

(srspk , srsvk)← SNARK .KeyGen(srs,R), π ← SNARK .Prove(srspk , (x,w),R)] = 1.

Notation We denote by StateR the set of all states state1 such that given some relation R and any possible
srs, for any output x1 of SNARK .PartInputs(srs, state1,R) with state1 ∈ StateR, there exists x2 and w with
(x = (x1, x2), w) ∈ R; we further assume StateR ̸= ∅.

31

Knowledge-soundness with respect to SNARK .PartInputs holds if there exists a PPT extractor E such
that for all PPT adversaries A, for all auxSNARK ∈ D and for all state1 ∈ StateR

Pr [(x = (x1, x2), w) ∈ R ∧ 1← SNARK .Verify(srsvk , x = (x1, x2), π,R) |
srs ← SNARK .Setup(auxSNARK), (srspk , srsvk)← SNARK .KeyGen(srs,R),
(x1, state2)← SNARK .PartInput(srs, state1,R), (x2, π)← A(srs, state2,R),
w ← EA(srs,R)]

is overwhelming in λ, where by EA we denote the extractor E that has access to all of A’s messages during the
protocol with the honest verifier.
Succinctness holds if the size of the proof π is poly(λ) and SNARK .Verify runs in time poly(λ+ |x|).

Firstly, if x1, state1 and state2 are the empty strings, we obtain the standard SNARK definition. Secondly, R is
not a component of the vector auxSNARK so even if SNARK .Setup has auxSNARK as parameter, it is universal,
i.e., it can be used to derive proving and verification keys for circuits of any size up to a polynomial in the
security parameter λ, independently of any specific NP relation. Thirdly, for the SNARKs we design, the size
of the key used by the honest verifier is much smaller than the size of the honest prover’s key. To capture this
special case we made the separation clear between the two keys; however, a potential adversarial prover has
access to the complete srs key. Moreover, our SNARKs are secure in the AGM model [36], i.e., security is w.r.t.
AGM adversaries only and by EA we denote the extractor E that has access to all of A’s messages during the
protocol with the honest verifier including the coefficients of the linear combinations of group elements used by
the adversary at any protocol step for outputting new group elements at the next step. Finally, the auxiliary in-
put (i.e., state1) is required to be drawn from a “benign distribution” or else extraction may be impossible [12,18].

We did not include the notion of zero-knowledge since it is not required.

C Ranged Polynomial Protocols for NP Relations

In the following, we keep the convention that all algorithms receive an implicit security parameter λ. The
definition below is a natural extension of the notions of polynomial protocols and polynomial protocols for
relations from Section 4 of PLONK [38] to polynomial protocols over ranges for conditional NP relations with
additional refinements required by our specific use case; these refinements are incorporated into steps (4), (5)
and (6) as follows:

Definition 5. (Polynomial Protocols over Ranges for Conditional NP Relations) Assume three parties, a prover
Ppoly, a verifier Vpoly and a trusted party I. Let Rc be a conditional NP relation (with c being a predicate) and
let x be a public input both of which have been given to Ppoly and Vpoly by an InitGen efficient algorithm. For
positive integers d, D, t, l, u, e and for set S ⊂ F, an S-ranged (d,D, t, l, u, e)-polynomial protocol PRc for
relation Rc is a multi-round protocol between Ppoly, Vpoly and I such that:

1. The protocol PRc definition includes a set of pre-processed polynomials g1(X), . . . , gl(X) ∈ F<d[X].
2. The messages of Ppoly are sent to I and are of the form f(X) for f(X) ∈ F<d[X].

If Ppoly sends a message not of this form, the protocol is aborted.
3. The messages from Vpoly to Ppoly are random coins.
4. Vpoly may perform arithmetic computations using input x and the random coins used in the communication

with Ppoly. Let (res1 , . . . , resu) be the results of those computations which Vpoly sends to I.
5. Using vectors which are part of input x and/or other ad-hoc vectors which Vpoly deems useful, Vpoly may

compute interpolation polynomials s1(X), . . . , se(X) over domain S such that s1(X), . . . , se(X) ∈ F<d[X].
Vpoly sends s1(X), . . . , se(X) to I.

6. At the end of the protocol, suppose f1(X), . . . , ft(X) are the polynomials that were sent from Ppoly to I.
Vpoly may ask I if certain polynomial identities hold between

{f1(X), . . . , ft(X), g1(X), . . . , gl(X), s1(X), . . . , se(X)}

over set S (i.e., if by evaluating all the polynomials that define the identity at each of the field elements from
S we obtain a true statement). Each such identity is of the form

32

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X))) ≡ 0,

for some hi(X) ∈ {f1(X), . . . , ft(X), g1(X), . . . , gl(X), s1(X), . . . , se(X)},
G(X,X1, . . . , XM) ∈ F[X,X1, . . . , XM], v1(X), . . . , vM (X) ∈ F<d[X] such that F (X) ∈ F<D[X] for ev-
ery choice of f1(X), . . . , ft(X) made by Ppoly when following the protocol correctly. Note that some of the
coefficients in the identities above may be from the set {res1 , . . . , resu}.

7. After receiving the answers from I regarding the polynomial identities, Vpoly outputs acc if all identities hold
over set S, and outputs rej otherwise.

Additionally, the following properties hold:

Perfect Completeness: If Ppoly follows the protocol correctly and uses a witness ω with (x, ω) ∈ Rc, Vpoly
accepts with probability one.
Knowledge Soundness: There exists an efficient algorithm E, that given access to the messages of Ppoly to I
it outputs ω such that, for any strategy of Ppoly, the probability of Vpoly outputting acc at the end of the protocol
and, simultaneously, (x, ω) ∈ Rc is overwhelming in λ.

Our definition for polynomial protocols over ranges does not include a zero-knowledge property as it is not
required in our current work.

Given the definition for polynomial protocols over ranges for conditional relations as detailed above, we are now
ready to state the following result. The proof follows with only minor changes from that of Lemmas 4.5. and
4.7. from [38].

Lemma 3. (Compilation of Ranged Polynomial Protocols for Conditional NP Relations into Hybrid Model
SNARKs using PLONK) Let PRc be a public coin S-ranged (d,D, t, l, u, e)-polynomial protocol for relation Rc

where only one identity is checked by Vpoly and predicate c from the definition of Rc needs to be fulfilled only
by a part x1 of the public input of the relation Rc. Then one can construct a hybrid model SNARK protocol
P∗

Rc for relation PRc with SNARK .PartInput as defined below and with P∗
Rc secure in the AGM under the

2d-DLOG assumption6 such that:

1. The prover P in P∗
Rc requires e(PRc) G1 ,out -exponentiations where e(PRc) is define analogously as in

PLONK (see preamble of Section 4.2.), however it additionally takes into account polynomials s1(X), . . . , se(X).
2. The total prover communication consists of t + t∗(PRc) + 1 G1 ,out -elements and M F-elements, where

t∗(PRc) is defined identically as in PLONK (see preamble of Section 4.2.).
3. The verifier V in P∗

Rc requires t+ t∗(PRc) + 1 G1 ,out -exponentiations, two pairings and one evaluation of
the polynomial G, and, additionally, the verifier in P∗

Rc computes e polynomial commitments to polynomials
in the set {s1(X), . . . , se(X)}.

4. For x1 part of state1 , the algorithm for computing partial inputs is defined as

SNARK .PartInput(srs, state1 ,Rc)

If c(x1) = 0

Return

Else

Return(state1 , x1)

D Choosing h when Einn = G1 ,inn

For the polynomial protocols and custom SNARKs we have designed in Section 5, we have chosen h ∈
Einn \ G1 ,inn . However, we have not covered so far the case when Einn = G1 ,inn and how to choose h in
such a situation. Our current section will give a guide for that. In fact, if Einn = G1 ,inn , we provide a method of
choosing h that will be suitable not only for our custom SNARKs from Section 5, but also for any other SNARK
that proves the correctness of an aggregated public key (i.e., apk for an aggregatable signature scheme), among
6 Definition 2.1. in PLONK [38] formally describes the 2d-DLOG assumption.

33

other modelled constraints.

Let H be a hash function, H : {0, 1} → F such that H is used for the Fiat-Shamir transformation of a succinct
argument of knowledge (including a sub-proof of correctness of apk) into its non-interactive version. Let x be
the public input corresponding to the above succinct argument of knowledge. Note that in case of the hybrid
model SNARKs defined in this work (see Definition 4), the public input includes the partial input. For a concrete
example of a partial input, see one of our custom SNARKs fully rolled out in Section G. Then, the prover and
the verifier compute h, for example as

h = H(h, "starting input point for public keys addition").

Intuitively, in the random oracle model (which is already an assumption we need for a secure Fiat-Shamir trans-
formation that preserves knowledge-soundness), h is thus an elliptic curve point on Einn , uniformly distributed
on Einn = G1 ,inn . Hence, for a large enough elliptic curve group (i.e., an elliptic curve for which the number of
elliptic curve points is O(2λ) for security parameter λ), the probability of h plus any elliptic curve point being
equal to a fixed elliptic curve is negligible in λ. This, in turn, ensures that condition 3) from Observation 3 is
only met with negligible probability. Hence, knowledge soundness for our polynomial protocols in Section 5.1
and Section 5.2 still holds with overwhelming probability, so all follow-up results in Section 5 still hold.

E Postponed Proofs for Packed Accountable Ranged Polynomial Protocol

We give below the missing proofs from Section 5.2:

Claim 8. If the polynomial identities id6(X) = 0, id7(X) = 0 hold over range H, then, e.w.n.p., we have
ca,i = 2i mod block · ri÷block, ∀i < n and sum =

∑n−1
i=0 bi · ca,i, where bi = b(ωi),∀i < n. If, additionally, identity

id5(X) = 0 holds over H, r has been randomly chosen in F, sum =
∑ n

block−1
j=0 b′jr

j (as computed by Vpoly) and
biti ∈ B,∀i < n and b′j =

∑block−1
k=0 2k · bitblock·j+k ,∀0 ≤ j ≤ n

block − 1 (due to the input (b′0, . . . , b
′ n
block−1) being

interpreted by the verifier Vpoly as in F
n

block

|block|), then e.w.n.p., bi = biti ,∀i < n.

Proof. To prove the first part of the claim, assume by contradiction that ca,0 = k ̸= 1. Then, by induction, since
id6(X) = 0 on H,

ca,i = k · 2i mod block · ri÷block,∀0 < i < n.

Additionally, the property

ca,0 = ca,n−1 · (2 + (
r

2block−1
− 2) · 1) + (1− r

n
block) (1)

holds (again, from id6(X) = 0 on H). However, substituting ca,0 = k and ca,n−1 = k · 2block−1 · r n
block−1 in (1),

we obtain k = k · 2block−1 · r n
block−1 · r

2block−1 + 1− r
n

block which is equivalent to k(1− r
n

block) = 1− r
n

block , and, due to
Schwartz-Zippel Lemma and the fact that degree n is negligibly smaller compared to the size of F, this implies
e.w.n.p.k = 1 thus contradiction, so the values ca,i have indeed the claimed form.
Next, by expanding id7(X) = 0 over H, the following holds

acca,1 = acca,0 + b0 · ca,0
acca,2 = acca,1 + b1 · ca,1

. . .

acca,n−1 = acca,n−2 + bn−2 · ca,n−2

acca,0 = acca,n−1 + bn−1 · ca,n−1 − sum.

By summing together the LHS and, respectively, the RHS of the equalities above and reducing the equal terms,
we obtain sum =

∑n−1
i=0 bi · ca,i.

34

For the second part of the claim, since id5(X) = 0 holds over H then bi = b(ωi) ∈ B,∀i ≤ n− 1. Finally, from
verifier’s computation and from the first part of the claim we have

n
block−1∑
j=0

b′jr
j = sum =

n−1∑
i=0

bi · ca,i =
n−1∑
i=0

bi · 2i mod block · ri÷block =

n
block−1∑
j=0

(

block−1∑
k=0

2k · bblock·j+k) · rj =
n

block−1∑
j=0

b′′j r
j ,

(2)

where ∀j, b′′j are field elements equal to the binary representation that uses contiguous blocks of block components
from the bitmask (b0, . . . , bn−1). Since both the LHS and the RHS of relation (2) represent two ways of computing
sum as an inner product of a vector of field elements (on one hand, (b′0 , . . . , b

′
n

block−1), on the other hand,
(b′′0 , . . . , b

′′
n

block−1)) with the vector (1, r, . . . , r
n

block−1), where r has been chosen at random, by the small exponents
test [9], we obtain that e.w.n.p.b′′j = b′j ,
∀ 0 ≤ j ≤ n

block − 1. Finally, if we equate the bit representation in F (i.e., using field elements from B) of field
elements b′′j and b′j ,∀0 ≤ j ≤ n

block − 1 and remember that, by verifier’s check or by construction, respectively,
each such field element has no more that block binary bits, we can conclude that e.w.n.p.bi = biti ,∀i < n.

Lemma 4. Ppa as described in Section 5.2 is an H-ranged polynomial protocol for conditional NP relation
Rincl

pa .

Proof. If (b′,pk, apk ,bit) ∈ Rincl
pa , meaning that pk ∈ Gn−1

1 ,inn and bit ∈ Bn and apk =
∑n−2

i=0 [biti] · pki and
b′j =

∑block−1
i=0 2i · bitblock·j+i ,∀j < n

block hold then it is easy to see that the honest prover Ppoly in Ppa will
convince the honest verifier Vpoly in Ppa to accept with probability 1 so perfect completeness holds. Regarding
knowledge-soundness, if the verifier Vpoly in Ppa accepts, then the extractor E sets (bit0, . . . , bitn−1) as the vector
of evaluations over H of polynomial b(X) sent by Ppoly to I. Next, we prove that if (pk0 , . . . , pkn−2) ∈ Gn−1

1 ,inn

and the verifier in Ppa accepts, then

((b′0 , . . . , b
′
n

block−1), (pk0 , . . . , pkn−2), apk , (bit0, . . . , bitn−1)) ∈ Rincl
pa ,

which is equivalent to proving that apk =
∑n−2

i=0 [biti] · pki and bit ∈ Bn and

b′j =

block−1∑
i=0

2i · bitblock·j+i ,∀j <
n

block
.

According to Claim 8 and corollary 2 this indeed holds e.w.n.p.

F Compiler for Hybrid Model SNARKs

F.1 Technical Challenges and Contributions Regarding our Custom SNARKs

In order to define and implement our committee key scheme accountable light client systems and in order to
design the custom SNARKs that support our efficiency results, we had to tackle some technical challenges and
make additional contributions as summarised below.

Extending PLONK Compiler to Mixed Commitment and Vectors NP Relations Firstly, our custom SNARKs
takes inspiration from PLONK [38] in terms of the design of the proof system used, and of the circuits and
gates. However, our SNARKs also have differences compared to PLONK. PLONK applies to NP relations that
use vectors of field elements for public inputs and witnesses. However we need SNARKs whose defining NP
relations also have polynomial commitments (in our case, the committee key C) as part of their public inputs.
Hence, the original PLONK compiler does not suffice; we extend it with a second step in which we show that
under certain conditions which our protocol fulfils, the SNARKs obtained using the original PLONK compiler
are also SNARKs for a mixed type of NP relation containing both vectors and polynomial commitments. The
full details and proofs can be found in Section F and we believe this compiler extension to be of independent
interest.

35

Conditional NP Relations for Efficiency Secondly, we also require NP relations that have a well-defined sub-
predicate which is verified outside the SNARKs. In a blockchain instantiation, any current validator set has to
come to a consensus, among other things, on the next validator set, represented by a set of public keys. The
validator set computes and signs a pair of polynomial commitments to the next set of validators’ public keys.
Before including a public key in the set, the validators perform several checks on the proposed public key, such
as being in a particular subgroup of the elliptic curve. This check is not performed by the SNARKs’ constraint
system, but is required for the correctness of the statement the SNARKs prove. This design decision makes our
SNARKs more efficient, but it also means we have to extend the usual definition of NP relations to conditional
NP relations, where in fact, one of the subpredicates that define the conditional relation is checked outside
the SNARKs or ensured due to a well-defined assumption. We introduce the general notion of conditional NP
relation in Section 4.4 and describe our concrete conditional NP relations in Section 5.

Hybrid Model SNARKs In line with the two above technical challenges and the solutions we came up with, we
extend the existing definitions related to SNARKs [43,38] by introducing an algorithm which we call PartInput .
For our use case, this allows us to separate the public input for the NP relations that define our custom SNARKs
in two: a part that is computed by the current set of validators on the blockchain in question and the rest of the
public input plus the corresponding SNARK proof are computed by a (possibly malicious) prover interacting
with the light client verifier. Our newly introduced notion of hybrid model SNARK (see Section B) generalises
this public input separation concept and its definition is used to prove the security of our custom SNARKs in
Section F.

F.2 SNARK compiler

We present a two-steps PLONK-based compilation technique from ranged polynomial protocols for conditional
NP relations (formal definition in Section C) to hybrid model SNARKs (Definition 4) such that the conditional
NP relations that define the SNARKs we compile in the second step contain both polynomial commitments and
vectors of field elements as public inputs. By using just the first step of our compiler which is equivalent to the
original PLONK compiler [38], one would not be able to obtain SNARKs with mixed public inputs consisting of
both vectors of field elements and also poly commitments. In turn, this type of NP relations with mixed inputs
is crucial for designing accountable light clients via the use of committee key schemes (see Section 5.4).

F.3 Our Compiler: Step 1

(PLONK Compiler - from Polynomial Protocols to SNARKs)

We summarise and exemplify below the PLONK-based compilation technique [38] from ranged polynomial
protocols for conditional NP relations (formal definition in Section C) to SNARKs for pure vector-based NP
relations. This is also the first of our two-steps compiler. Concretely, our first step applies the PLONK com-
piler [38] (Lemma 4.7): we compile the information theoretical ranged polynomial protocols Pba and Ppa for
relations Rincl

ba and Rincl
pa , respectively (see Sections 5.1,5.2) into SNARKs P∗

ba, and P∗
pa, respectively. We can

define this compilation step for any ranged polynomial protocols for relations (as per definition C in Section 5).
In order to do that we need:

– The batched version of KZG polynomial commitments [50] described in Section 3 of PLONK [38].7

– A general compilation technique: such a technique has been already defined in Lemma 4.7 of PLONK;
combined with Lemma 4.5 from PLONK this technique can be applied with minor adaptations (this includes
the corresponding technical measures) to the notion of ranged polynomial protocols.

– So far, both the ranged polynomial protocols for relations and the protocols resulted after the first compila-
tion step have been explicitly defined as interactive protocols. In order to obtain the non-interactive version
of the latter (essentially the N in SNARK) one has to apply the Fiat-Shamir transform [32], [59], [40].

7 In fact, one can replace the use of KZG polynomial commitments with any binding polynomial commitment that
has knowledge-soundness, including non-homomorphic polynomial commitments, such as FRI-based polynomial com-
mitments (e.g., RedShift [51]). If the optimisation gained from PLONK linearisation technique is a goal, then, with
minimal changes one can use any homomorphic polynomial commitment, e.g., the discrete logarithm based polynomial
commitment from Halo [17].

36

Let R be a (conditional) NP relation, let PR be a ranged polynomial protocol for relation R and let P∗
R be

the SNARK compiled from PR using the PLONK compiler. The compilation technique requires the SNARK
prover of P∗

R to compute polynomial commitments to all polynomials that the prover Ppoly in PR sent to the
ideal party I. Analogously, it requires the SNARK verifier of P∗

R to compute polynomial commitments to all
pre-processed polynomials8 as well polynomial commitments to polynomials the verifier Vpoly in PR sent to the
ideal party I. Then, the SNARK prover sends the SNARK verifier openings to all the polynomial commitments
computed by him as well as the polynomial commitments computed by the SNARK verifier. The SNARK prover
additionally sends the corresponding batched proofs for polynomial commitment openings. In turn, the SNARK
verifier accepts or rejects based on the result of the verification of the batched polynomial commitment scheme.

A more efficient compilation technique exists which reduces the number of polynomial commitments and alleged
polynomial commitments openings (i.e., both group elements and field elements) sent by the SNARK prover to
the SNARK verifier; this, in turn, reduces the size of the SNARK proof. This technique is called linearisation
and is described, at a high level, after Lemma 4.7 in PLONK. The existing description however covers only the
SNARK prover side and it does not detail the SNARK verifier side so in the following we cover that.

By functionality, the vectors that are handled by the verifier Vpoly are of two types: pre-processed vectors and
public input vectors. These two types of vectors are used by Vpoly to obtain, via interpolation over the range on
which the respective range polynomial protocol is defined, pre-processed polynomials (as used in the definition C
in Section 5, e.g., polynomial aux(X) used in Section 5.1) and public-inputs-derived polynomials (e.g., poly-
nomials pkx(X) and pky(X) used in Sections 5.1,5.2) and polynomial b(X) used in Section 5.1). The efficient
linearisation technique allows the SNARK verifier to reduce the number of polynomial commitments it has to
compute compared to the general PLONK compiler in the following way. Instead of having to compute polyno-
mial commitments to all polynomials Vpoly sends to I (including any corresponding pre-processed polynomials),
the SNARK verifier computes polynomial evaluations at one or multiple random points (as per the linearisation
step specific requirements) for all the polynomials that are either easy to evaluate (e.g., polynomial aux(X)
used in Section 5.2) or all the polynomials that are obtained from vectors that do not take up a large amount of
memory (e.g., polynomial b(X) used in Section 5.1). For the rest of the polynomials (e.g., pkx (X) and pky(X)),
the SNARK verifier computes polynomial commitments as before.

We note we can apply all the techniques mentioned above, including the combined prover-and-verifier-side
linearisation to compile our ranged polynomial protocols Pba and Ppa into the corresponding SNARKs P∗

ba

and P∗
pa, respectively. To conclude this step, we formally state in Section 5, Lemma 3 under which condition

and how efficiently one can compile ranged polynomial protocols for conditional NP relations (where the public
inputs are interpreted as vector of field elements) into hybrid model SNARKs by using only the original PLONK
compiler.

F.4 Our Compiler: Step 2

(Mixed Vector and Commitments based NP Relations and Associated SNARKs)

The type of NP relations we have worked with so far as well as the more general PLONK NP relation ([38],
Section 8.2) have vector of field elements as public inputs. Next we show that SNARKs compiled using Step 1
can be re-casted, under certain assumption, SNARKs for a new type of NP relation that specifically contains
polynomial commitments as part of the input. Interpreting our already compiled SNARKs as SNARKs for this
new type of NP relation is essential for designing accountable light client systems via committee key schemes
(see instantiation 5 in Section 5.4).
Let conditional NP relation Rc

vec be:

Rc
vec = {(input1 ∈ D1, input2 ∈ D2;witness1) : p1(input1, input2,witness1) = 1 |

c(input1) = 1 ∧ p2(input1, input2,witness1) = 1},

where input1, input2 are two sets of public input vectors belonging domains D1, D2. witness1 is a set of
witness vectors and c, p1, p2 are predicates. Let Pvec be a ranged polynomial protocol for relation Rc

vec . Note

8 This is a one-time computation that is reused by the SNARK verifier for all SNARK proofs over the same circuit.

37

that since c applies only to a part of the public input for relation Rc
vec (i.e., input1), we can apply Lemma 3 of

Section C and Step 1 of our compiler to polynomial protocol Pvec .

We make the following hybrid model assumptions:

– (HMA.1.) Vpoly in Pvec computes Q1 ,input1(X), . . . ,Qm,input1(X) which depend deterministically on input1
and sends them to I.

– (HMA.2.) Vpoly in Pvec does not use input1 in any further computation of any other polynomials or values
its sends to I.

– (HMA.3.) By evaluating Q1 ,input1(X), . . . ,Qm,input1(X) over the range on which Pvec is defined one obtains
(using some efficiently computable and deterministic transformations) the set of vectors input1.

We denote by P∗
vec the hybrid model SNARK obtained after compiling Pvec using compilation Step 1. Due to

(HMA.1.) and according to Step 1, the SNARK verifier in P∗
vec computes

Com1 = Com(Q1 ,input1), . . . ,Comm = Com(Qm,input1)

which are KZG poly commitments to Q1 ,input1(X), . . . ,Qm,input1(X). We denote vector (Com1 , . . . ,Comm) by
Com(input1) and we denote by C the set of all KZG poly commitments or vectors of such poly commitments.
We also define the relation:

Rc
vec,com = {C ∈ C, input2 ∈ D2;witness1,witness2) : p1(witness2, input2,witness1) = 1 |

c(witness2) = 1 ∧ p2(witness2, input2,witness1) = 1 ∧ C = Com(witness2)}

Finally, for input1 part of state1 , we define SNARK .PartInput :

SNARK .PartInput(srs, state1 ,Rc
vec,com)

If c(input1) = 0

Return

Else

Compute via interpolation on Pvec range Q1 ,input1(X), . . . ,Qm,input1(X).

C = (Com(Q1,input1(X)), . . . ,Com(Qm,input1(X)))

state2 = state1 ∪ {C}
Return(state2 ,C)

With the above notation, our compiler’s Step 2 is:
The alleged hybrid model SNARK Ph

vec for relation Rc
vec,com is:

– SNARK .Setup and SNARK .KeyGen are as for relation Rc
vec .

– SNARK .PartInput for relation Rc
vec (see Lemma 3 in Section C) is replaced with SNARK .PartInput for

relation Rc
vec,com .

– SNARK .Prover for relation Rc
vec,com is identical with SNARK .Prover for relation Rc

vec (as compiled using
Step 1) with the appropriate re-interpretation of the public inputs and witness, i.e., meaning that the
algorithm remains the same but the witness and public input become those for Rc

vec,com .
– SNARK .Verifier for relation Rc

vec,com is identical with SNARK .Verifier for relation Rc
vec (as compiled

using Step 1) with the appropriate re-interpretation of the public inputs and such that SNARK .Verifier
for Rc

vec,com does not compute the polynomial commitments to the polynomials defined by assumption
(HMA.1.).

Lemma 5. Let Pvec be a ranged polynomial protocol for relation Rc
vec defined above and let P∗

vec be the hybrid
model SNARK for relation Rc

vec secure in the AGM obtained by compiling Pvec using our compiler’s Step 1. If
the hybrid model assumptions (HMA.1.) - (HMA.3.) hold w.r.t. protocol Pvec and StateRvec,com

̸= ∅ then Ph
vec

as compiled using our compiler’s Step 2 is a hybrid model SNARK for relation Rc
vec,com secure also in the AGM.

38

Proof. Let EKZG and E be the extractors from the knowledge-soundness definitions for the KZG batch poly-
nomial commitment scheme (as in definition 3.1, Section 3 in [38]) and the hybrid model SNARK P∗

R for
relation Rc

vec (as per definition 4), respectively. Let A be an adversary against knowledge soundness in the
hybrid model w.r.t. Ph

vec and relation Rc
vec,com and let auxSNARK ∈ D and let state1 ∈ StateRvec,com ; let

(C, state2) = SNARK .PartInput(srs, state1 ,Rc
vec,com). By the definition of SNARK .PartInput for Ph

vec , there
exists input1 such that C = Com(input1) and c(input1) = 1. We denote by (input2, π) the output of
A(srs, state2 ,Rc

vec,com) and let A1 be the part of A that sends openings and batched proofs for the polynomial
commitments in C.

On the one hand, if SNARK .Verifier(srsvk , (C, input2), π,Rc
vec,com) in Ph

vec accepts, then the KZG verifier
corresponding to A1 also accepts. When such an event takes place, then, e.w.n.p.EKZG extracts polynomials
Q′

1(X), . . . , Q′
m(X) that represent witnesses for the vector C of commitments and the alleged openings of A1.

Because the KZG polynomial commitment scheme is binding and by the definition of SNARK .PartInput for
Ph

vec , we obtain that Q′
1(X) = Q1(X), . . . , Q′

m(X) = Qm(X). Since per (HMA.3.), the set {Q1(X), . . . , Qm(X)}
evaluates to input1 over the range over which Pvec was defined, e.w.n.p.the witness polynomials extracted by
EKZG evaluate to input1.

On the other hand, if SNARK .Verifier(srsvk , (C, input2), π,Rc
vec,com) in Ph

vec accepts, then
SNARK .Verifier(srsvk , (input1, input2), π,Rc

vec) in P∗
vec also accepts. In turn, this acceptance together with

the fact that P∗
vec has knowledge-soundness as per definition 4, it implies E e.w.n.p.extracts witness1 such

that (input1, input2,witness1) ∈ Rc
vec (#).

By the definition of SNARK .PartInput for Ph
vec and the way input1 was defined, it holds that c(input1) = 1.

Due to (#) and by the definition of relation Rc
vec , the predicates: p1(input1, input2, witness1) = 1 and

p2(input1, input2,witness1) = 1 hold. If we let witness2 = input1, then

(C = Com(input1), input2,witness1, input1) ∈ Rc
vec,com ,

so using EKZG and E we can build an extractor for any knowledge-soundness adversary A for alleged hybrid
model SNARK Ph

vec for relation Rc
vec,com , which concludes the proof.

It is straightforward to apply the technique described above to our SNARKs Ph
ba and Ph

pa compiled in Step 2
and obtain relations Rincl

ba,com and Rincl
pa,com as described below such that they fulfil Lemma 5.9

Rincl
ba,com = {(C ∈ C,bit ∈ Bn, apk ∈ F2;pk) : apk =

n−2∑
i=0

[biti] · pki |

pk ∈ Gn−1
1 ,inn ∧ C = Com(pk)}

Rincl
pa,com = {(C ∈ C,b′ ∈ F

n
block

|block|, apk ∈ F2;pk,bit) : apk =

n−2∑
i=0

[biti] · pki |

pk ∈ Gn−1
1 ,inn ∧ bit ∈ Bn ∧ b′j =

block−1∑
i=0

2i · bitblock·j+i ,∀j <
n

block
∧ C = Com(pk)}

For completeness, we also include the full rolled out SNARK Ph
pa for relation Rincl

pa,com in Section G and we
provide a comparison between PLONK universal SNARK and our custom SNARKs in Section H.

G Rolled out Protocol Ph
pa for Relation Rincl

pa,com

We give below the full rolled-out hybrid SNARK protocol Ph
pa for conditional NP relation Rincl

pa,com . This is
obtained by applying our two-steps compiler from Section F to polynomial protocol Ppa. In order to obtain

9 Due to our specific application to proof-of-stake blockchain context in which we make use of our custom SNARKs, the
assumption/requirement that StateRvec,com ̸= ∅ for Rvec,com ∈ {Rincl

ba,com ,Rincl
pa,com} is fulfilled.

39

the non-interactive version (i.e., the N from SNARK) we have additionally applied the Fiat-Shamir transform.
In the following, by transcript at a certain point in time we denote the concatenation of the global constant,
verification key, trusted public input, other public input and the proof elements created by the prover up to
that point in time. H is a hash function, H : {0, 1} → F and it emulates the random oracle. In the following,
⊕ is the addition operation on Einn in affine coordinates. Note that in our implementation we instantiate Einn

with BLS12-377 [16] and Eout with BW6-761 [47], while we choose block to be 256 as this is the largest power of
2 smaller than the size of a field element in F (i.e., the base field for BLS12-377 which is the same as the scalar
field of BW6-761). Finally, n has been defined as per Section 4.6, i.e., n is a large enough power of 2; moreover,
we let v = n− 1 and we let N = n. This, in turn, ensures that N has been chosen according to the properties
stated in instantiation A, in particular when defining AS .Setup.

Public Parameters:
(G1 ,inn , g1 ,inn ,G2 ,inn , g2 ,inn ,GT ,inn , einn ,Hinn ,HPoP) from pp where pp ← AS .Setup(auxAS = n)

Global constant: h ∈ Einn \G1 ,inn

Trusted Setup: srs ← SNARK .Setup(auxSNARK = (n, 3n− 3)), where

srs = ([1]1 ,out , [τ]1 ,out , [τ
2]1 ,out , . . . , [τ

3n−3]1 ,out , [1]2 ,out , [τ]2 ,out)

Proving and Verifying Key Generation: (srspk , srsvk)← SNARK .KeyGen(srs,Rincl
pa,com),

where (srspk , srsvk) = (([1]1 ,out , [τ]1 ,out , [τ
2]1 ,out , . . . , [τ

3n−3]1 ,out), ([1]1 ,out , [1]2 ,out , [τ]2 ,out))

Partial Input: (x1, state2)← SNARK .PartInput(srs, state1 ,Rincl
pa,com), where (pk0 , . . . , pkn−2) is part of state1 ;

if (pk0 , . . . , pkn−2) /∈ Gn−1
1 ,inn , SNARK .PartInput(srs, state1 ,Rincl

pa,com) outputs the empty string, otherwise
SNARK .PartInput outputs x1 = ([pkx]1 ,out , [pky]1 ,out) and state2 = state1 ∪ {x1}, where ∀i ∈ {0, . . . , n− 2},
pki as an element of the curve Einn has the affine representation (pkxi , pkyi). The polynomials pkx(X) and
pky(X) are computed as pkx(X) =

∑n−2
i=0 pkxi · Li(X) and pky(X) =

∑n−2
i=0 pkyi · Li(X) and finally, the poly-

nomial commitments are computed as [pkx]1 ,out = pkx(τ) · [1]1 ,out and [pky]1 ,out = pky(τ) · [1]1 ,out .

Public input: x1 = ([pkx]1 ,out , [pky]1 ,out), x2 = ((b′0 , . . . , b
′
n

block−1), apk)

Witness: w = ((pk0 , . . . , pkn−2), (bit0, . . . , bitn−1))

Prover’s Algorithm: π ← SNARK .Prove(srspk , ((x1, x2), w),Rincl
pa,com), where

Step 1:
Compute the affine representation h = (hx, hy) and apk ⊕ h = ((apk ⊕ h)x, (apk ⊕ h)y).

Compute pkx = (pkx0 , . . . , pkxn−2) and pky = (pky0 , . . . , pkyn−2) s. t. ∀i ∈ {0, . . . , n− 2}, pki as an element
of the curve Einn has the affine representation (pkxi , pkyi).

Let (kaccx0, kaccy0) = (hx, hy) and compute

(kaccxi+1, kaccyi+1) = (kaccxi, kaccyi)⊕ biti(pkxi, pkyi),∀i < n− 1.

Compute polynomials

b(X) =

n−1∑
i=0

biti · Li(X),

kaccx(X) =

n−1∑
i=0

kaccxi · Li(X),

40

kaccy(X) =

n−1∑
i=0

kaccyi · Li(X),

pkx(X) =

n−2∑
i=0

pkxi · Li(X),

pky(X) =

n−2∑
i=0

pkyi · Li(X).

Compute [b]1 ,out = b(τ) · [1]1 ,out , [kaccx]1 ,out = kaccx(τ) · [1]1 ,out , [kaccy]1 ,out = kaccy(τ) · [1]1 ,out .

The first output of the prover is ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out).

Step 2:
Compute the sum challenge r = H(transcript).

Compute sum =
∑ n

block−1
j=0 b′jr

j .

Compute: r
2block−1 , r

n
block .

Compute polynomials

c(X) =

n−1∑
i=0

ci · Li(X),

where ci = 2i mod block · ri÷block, 0 ≤ i ≤ n− 1.

acc(X) =
n−1∑
i=0

acci · Li(X),

where acc0 = 0 and acci =
∑i−1

j=0 bitj · cj , 0 < i ≤ n− 1.

aux(X) =

n−1∑
i=0

auxi · Li(X),

where auxi = 1 if i is divisible with block and auxi = 0 otherwise, ∀i < n

Compute [c]1 ,out = c(τ) · [1]1 ,out , [acc]1 ,out = acc(τ) · [1]1 ,out .

The second output of the prover is ([c]1 ,out , [acc]1 ,out).

Step 3:
Compute the quotient challenge α = H(transcript).

41

Compute the polynomial t(X) of degree at most 3 · n− 3 where

t(X)(Xn − 1) =

(X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X))2 · (kaccx(X) + pkx(X) + kaccx(ω ·X))− (pky(X)− kaccy(X))2)+

+ (1− b(X)) · (kaccy(ω ·X)− kaccy(X))]+

+ α(X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X)) · (kaccy(ω ·X) + kaccy(X))− (pky(X)− kaccy(X))·
· (kaccx(ω ·X)− kaccx(X))) + (1− b(X)) · (kaccx(ω ·X)− kaccx(X))]+

+ α2 · [b(X) · (1− b(X))]+

+ α3 · [c(ω ·X)− c(X) · (2 + (
r

2block−1
− 2) · aux(ω ·X))− (1− r

n
block) · Ln−1(X)]+

+ α4 · [(kaccx(X)− hx) · L0(X) + (kaccx(X)− (h+ apk)x) · Ln−1(X)]+

+ α5 · [(kaccy(X)− hy) · L0(X) + (kaccy(X)− (h+ apk)y) · Ln−1(X)]+

+ α6 · [acc(ω ·X)− acc(X)− b(X) · c(X) + sum · Ln−1(X)] .

Compute [t]1 ,out = t(τ) · [1]1 ,out .

The third output of the prover is [t]1 ,out .

Step 4:
Compute evaluation challenge ζ = H(transcript).

Compute evaluations: pkx = pkx(ζ), pky = pky(ζ), b = b(ζ), kaccx = kaccx(ζ), kaccy = kaccy(ζ), c = c(ζ),
acc = acc(ζ), t = t(ζ).

Compute linearisation polynomial:

r(X) = (ζ − ωn−1) · [b̄ · (kaccx− pkx)2 · kaccx(X) + (1− b̄) · kaccy(X)]+

+ α · (ζ − ωn−1) · [b̄ · ((kaccx− pkx) · kaccy(X)− (pky − kaccy) · kaccx(X)) + (1− b̄) · kaccx(X)]+

+ α3 · c(X)+

+ α6 · acc(X).

Compute evaluation of linearisation polynomial rω = r(ω · ζ).

The fourth output of the prover is (pkx, pky, b, kaccx, kaccy, c, acc, rω).

Step 5:
Compute opening challenge ν = H(transcript).

Compute first opening proof polynomial

Wζ(X) =
1

X − ζ
(t(X)− t̄+

+ ν(pkx(X)− pkx)+

+ ν2(·pky(X)− pky)+

+ ν3(b(X)− b̄)+

+ ν4(kaccx(X)− kaccx)+

+ ν5(kaccy(X)− kaccy)+

+ ν6(c(X)− c̄)+

+ ν7(acc(X)− acc))

42

and second opening proof polynomial

Wζ·ω(X) =
1

X − ζ · ω
(r(X)− rω).

Compute [Wζ]1 ,out = Wζ(τ) · [1]1 ,out and [Wζ·ω]1 ,out = Wζ·ω(τ) · [1]1 ,out .

The fifth output of the prover is ([Wζ]1 ,out , [Wζ·ω]1 ,out).

Compute the multipoint evaluation challenge u = H(transcript).

Return π = ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out , [c]1 ,out , [acc]1 ,out , [t]1 ,out , [Wζ]1 ,out , [Wζ·ω]1 ,out , pkx, pky, b,
kaccx, kaccy, c, acc, rω)

Verifier’s Algorithm: 0/1← SNARK .Verify(srsvk , (x1, x2), π,Rincl
pa,com), where

Step 1:
Compute the affine representation h = (hx, hy) and apk ⊕ h = ((apk ⊕ h)x, (apk ⊕ h)y).

Step 2:
Validate proof elements ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out , [c]1 ,out , [acc]1 ,out , [t]1 ,out , [Wζ]1 ,out , [Wζ·ω]1 ,out)
∈ G8

1 ,out .

Step 3:
Validate proof elements (pkx, pky, b, kaccx, kaccy, c, acc, rω) ∈ F8.

Step 4:
Compute challenges (r, α, ζ, ν, u) as in the prover PSNARK

pa,com description from the common input, trusted public
input, public input and respective necessary parts of the transcript using elements of πpa .

Step 5:
Compute: sum =

∑ n
block−1
j=0 b′jr

j .

Compute: r
2block−1 , r

n
block .

Step 6:
Compute polynomial evaluations ζn−1 and auxω = aux(ω ·ζ)10 and Lagrange basis polynomials L0(ζ) =

ζn−1
n·(ζ−1)

and Ln−1(ζ) =
(ζn−1)·ωn−1

n·(ζ−ωn−1) .

Step 711:
Compute quotient polynomial evaluation

t̄ =
rω + [b̄((kaccx− pkx)2 · (kaccx+ pkx)− (pky − kaccy)2)− (1− b̄) · kaccy] · (ζ − ωn−1)

ζn − 1
+

+
α · [b̄ · ((kaccx− pkx) · kaccy + (pky − kaccy) · kaccx)− (1− b̄) · kaccx] · (ζ − ωn−1)

ζn − 1
+

+
α2 · b̄ · (1− b̄)

ζn − 1
+

10 We have aux(ω · ζ) = 1 if (ω · ζ)
n

block = 1 and aux(ω · ζ) = 1
block

· ζn−1

(ω·ζ)
n

block −1
otherwise.

11 This step can be optimised in obvious ways in order to reduce the number of field operations necessary to compute t̄.
We choose to include the non-compact formula in this write-up such that the reader is able to follow the linearisation
process to a larger extent than via a more compact formula.

43

−α3 · [(1− r
n

block) · Ln−1(ζ)]

ζn − 1
− α3 · c̄ · (2 + (

r

2block−1
− 2)) · auxω+

+
α4 · [(kaccx− hx) · L0(ζ) + (kaccx− (h+ apk)x) · Ln−1(ζ)]

ζn − 1
+

+
α5 · [(kaccy − hy) · L0(ζ) + (kaccy − (h+ apk)y) · Ln−1(ζ)]

ζn − 1
+

+
α6 · [−acc− b̄ · c̄+ sum · Ln−1(ζ)]

ζn − 1
.

Step 8:
Compute full batched polynomial commitment [F]1 ,out .

[F]1 ,out =[t]1 ,out + ν · [pkx]1 ,out + ν2 · [pky]1 ,out + ν3 · [b]1 ,out +

+ (u · (ζ − ωn−1) · (b̄ · ((kaccx− pkx)2 + α · (pky − kaccy)) + α · (1− b̄)) + ν4) · [kaccx]1 ,out +

+ (u · (ζ − ωn−1)(α · b̄(kaccx− pkx) + (1− b̄)) + ν5) · [kaccy]1 ,out +

+ (u · α3 + ν6) · [c]1 ,out +

+ (u · α6 + ν7) · [acc]1 ,out .

Step 9:
Compute group-encoded batch evaluation [E]1 ,out

[E]1 ,out = (t̄+ ν · pkx+ ν2 · pky + ν3 · b̄+ ν4 · kaccx+ ν5 · kaccy + ν6 · c̄+ ν7 · acc+ u · rw) · [1]1 ,out

Step 10:
Batch validate all evaluations by checking that the following holds

eout([Wζ]1 ,out + u · [Wζ·ω]1 ,out , [τ]2 ,out) = eout(ζ · [Wζ]1 ,out + u · ζ ·ω · [Wζ·ω]1 ,out + [F]1 ,out − [E]1 ,out , [1]2 ,out).

H Comparison between PLONK and our SNARKs

In the following, we briefly look at the differences between PLONK universal SNARK and the SNARKs designed
in this work. We observe that while the NP relation that defines PLONK is more general, the relations that
define our SNARKs are bespoke as we are only interested in efficiently proving public key aggregation. Because
our relations are so bespoke, it turns out we do not require the full functionality that PLONK has to offer, and,
in particular, our SNARKs do not require any permutation argument.

A second difference is that while PLONK’s circuit is defined by a number of selector polynomials (which are a
type of pre-processed polynomials) and a PLONK verifier needs to perform a one-time expensive computation
of the polynomial commitments to those selector polynomials, our SNARK verifiers are able to avoid such a
pre-processing phase. Indeed, in the case of Ph

a (which is the only one of our three SNARKs that has a poly-
nomial, namely aux (X), that defines its circuit), our respective SNARK verifier does not need to compute a
commitment to its only “selector polynomial” as, due to its structure, aux (X) can be directly and efficiently
evaluated by our SNARK verifier itself.

A third difference is that using our two-steps compiler, our SNARKs verifiers are able to efficiently handle input
vectors of length O(n), where the degree of the polynomials committed to by our SNARK provers is also O(n).
Our SNARKs verifiers achieve efficiency by offloading the expensive polynomial commitment computation in-
volving the public inputs to a trusted third party.

44

Moreover, while PLONK does not incorporate trusted inputs, one can easily apply the Step 2 of our compiler to
PLONK. In particular, one could imagine a situation where a PLONK verifier is relying on a trusted party to
compute some or all of the polynomial commitments to the circuit’s selector polynomials. This is equivalent to
our hybrid model SNARK definition applied to PLONK. The benefit is that by delegating such a computation,
the PLONK verifier becomes more efficient.

Finally, looking at our light client system instantiation in Section J.3 due to the inductive structure of the
soundness proof (Theorem 10), the efficiency of using a hybrid model SNARK has an even greater impact for
the light client system verifier than that compared to verifying multiple instances of PLONK for the same
circuit: while for the latter the PLONK verifier has to compute commitments to selector polynomial only once
anyway, in the case of the former, the commitments to public inputs may differ at very step hence a trusted
third party relives a higher computation burden from the light client verifier overall.

I Postponed Security Proof for Committee Key Scheme

Theorem 9. Given the hybrid model SNARK scheme secure for relation R ∈ {Rincl
ba,com ,Rincl

pa,com} as obtained
using our two-step compiler in Section F and the aggregatable signature scheme AS as per Instantiation 7 (which
fulfils Definition 1, with the additional specification that auxAS = v + 1 and choosing v = n− 1), if we assume
that an efficient adversary (against soundness of) CKSR outputs public keys only from the source group G1 ,inn ,
then the committee key scheme CKSR as per Instantiation 5 is secure with respect to Definition 2.

Proof. We prove below the statement only for Rincl
ba,com . The statement can be proven analogously for Rincl

pa,com .

In order to prove perfect completeness for CKSR Instantiation 5 using a hybrid model SNARK secure for
relation Rincl

ba,com , we note that if AS .Verify(pp, apk ,m, asig) = 1 holds, then due to the instantiation for
CKSRincl

ba,com
.Verify , we have that

CKSRincl
ba,com

.Verify(pp, rsvk , ck ,m, asig , (πSNARK , apk), (biti)
n−1
i=1) = 1

iff, in turn,
SNARK .Verify(rsvk , (ck , (biti)

n−1
i=1 ||0, apk), πSNARK ,Rincl

ba,com) = 1 (1)

holds. Using the fact that the keys srs and (rspk , rsvk) for our hybrid model SNARK were generated correctly
using SNARK .Setup(v, 3v) and respectively SNARK .KeyGen(srs,Rincl

ba,com), also since (pki)
n−1
i=1 ∈ Gn−1

1 ,inn as
honestly generated by AS .GenKeypair , then

(x = (ck , (biti)
n−1
i=1 ||0, apk), w = (pk i)

n−1
i=1) ∈ R

incl
ba,com

(because apk =
∑n−1

i=1 biti · pki due to Instantiation 7 and ck was honestly generated as Com((pki)
n−1
i=1) as a

pair of binding polynomial commitments to the x and y coordinates of the keys in w, respectively) and, finally,
adding that the proof πSNARK was generated correctly as

πSNARK ← SNARK .Prove(rspk , (x,w),Rincl
ba,com),

then, by the perfect completeness property of the hybrid model SNARK for relationRincl
ba,com , we can conclude (1).

The proof for the soundness property is described below. Let A be an efficient adversary that, whenever it
outputs a vector of public keys (pki)

n−1
i=1 , the respective vector belongs to the set Gn−1

1 ,inn . Assuming that the
following holds

CKSRincl
ba,com

.Verify(pp, rsvk , ck ,m, asig , π = (πSNARK , apk ′), (biti)
n−1
i=1) = 1,

then, according to instantiation for CKSRincl
ba,com

, it implies that both

AS .Verify(pp, apk ′,m, asig) = 1 (2)

and
SNARK .Verify(rsvk , (ck , (biti)

n−1
i=1 ||0, apk

′), πSNARK ,Rincl
ba,com) = 1 (3)

45

hold where apk ′ was parsed from π. Since ck was generated correctly as the pair of binding polynomial commit-
ments Com((pki)

n−1)
i=1 using the vector (pki)n−1

i=1 output by the adversary A (which, as per adversary definition,
belongs to Gn−1

1 ,inn) and due to the knowledge soundness property of the SNARK scheme secure for relation
Rincl

ba,com , the knowledge soundness and the computational binding property of the polynomial commitment
scheme (since for our CKSR instantiation we use the KZG commitment scheme), it implies that, with over-
whelming probability

(x = (ck , (biti)
n−1
i=1 , apk

′), w = (pk i)
n−1
i=1) ∈ R

incl
ba,com .

From this, in turn, by the definition of relation Rincl
ba,com , we obtain that apk ′ =

∑n−1
i=1 biti ·pki . Moreover, by the

instantiation of aggregatable signature scheme AS , we have that
∑n−1

i=1 biti ·pki = AS .AggKeys(pp, (pki)i:biti=1)
and, as per soundness challenge definition, it holds that
apk ← AS .AggKeys(pp, (pki)i:biti=1). Hence apk ′ = apk . Finally, due to (2), we conclude that

AS .Verify(pp, apk ,m, asig) = 1

holds with overwhelming probability (q.e.d.).

J An Accountable Light Client System

In this section, we give a model for the consensus systems that our light client system can be applied to and we
define security properties for light client systems, and, in particular accountable light client systems. Moreover,
we present generic pseudocode for light client systems and prove that our implementation fulfils the security
properties that we define for this notion.

J.1 Informal Model and Context

First, we informally describe our model, then we formalise it in J.2. There is a consensus system which we
assume is a blockchain protocol. We consider consensus systems that make decisions based on signatures from
a subset of validators, where the validator set may change periodically. Our model has the following entities:

Full Nodes - a full node maintains a view of the consensus decisions and stores the current state of the blockchain.
A full node obtains both by running the consensus protocol correctly starting from the genesis state of the
blockchain.

Validator - a validator is a full node which the consensus protocol decides it belongs to a validator set. Once
elected, validators take part in the consensus protocol and, in turn, their signatures determine what the consensus
decides upon.

Light Client Verifier - a light client verifier is a node that does not keep the full state of the blockchain, but
rather obtains (ideally short) proofs of parts of the blockchain state they are interested in; light client verifiers
do this by being in communication with e.g., full nodes. In the optimistic scenario, where we have no adversary,
the light client verifier can connect to a single full node and the full node should be able to convince the light
client verifier of anything that the latter is interested in and the consensus system has agreed upon.

Adversary The adversary controls a number of full nodes and validators. They are interested in convincing the
light client verifier of things that may be in contradiction to what other (honest) nodes see as decided. The
adversary, via the parties it controls, can try to double spend on the same blockchain or on another blockchain
via a bridge. In the accountable case (which is the one we are interested in), the adversarial parties would like
to ensure that if an attack is discovered, the honest validators and not the adversarial ones are to be blamed
and punished. In the pessimistic scenario, a light client verifier may only be connected to the adversary. In this
scenario, we also assume that all full nodes, including honest validators are only connected to the adversary.

Validator Sets As briefly mentioned above, the consensus protocol decides which entities are validators; the
validators, in turn, agree on the consensus. The consensus protocol designates the next validator set which, in
turn, is represented by the set of the corresponding entities’ public keys.

46

Informal Security Properties We next informally describe the security properties that our light client sys-
tem should satisfy.

Completeness: If a full node sees that some fact was decided by the consensus, they can produce a proof that
would convince a light client verifier of this fact.

Soundness: If, from some honest full nodes point of view, at least 1/3 of the validators in the validator set at
any time are honest, then the light client verifier cannot be convinced of something incompatible with something
the honest full node saw as decided.

For short, completeness and soundness mean, respectively, that in the optimistic scenario, a full node can always
convince a light client verifier of some fact it sees as decided, and, in the pessimistic scenario, the adversary
cannot convince the light client verifier of something that was not decided.

Accountability means that if a light client verifier was convinced of an incorrect statement (in relation to what
has been decided on the blockchain so far), then one can detect the misbehaving validators that contributed to
that. We can separate this into two properties:

Accountability Completeness: If the light client verifier is convinced via a wrong proof of something which
is incompatible with something a full node sees as decided, and then the light client verifier forwards the wrong
proof to the full node, that full node can detect that some validators misbehaved.

Accountability Soundness: If a full node is given a light client proof of something that is incompatible with
something it sees as decided, then, when the full node detects that some validators misbehaved, indeed none of
those validators are honest.

Consensus System Model

Messages For a full node to prove to a light client verifier that something has been decided, in the end it will
prove that a message was signed by a quorum of validators from some validator set. Typically this message will
not directly include the information the full node wants to convince the light client that it has been decided
(during consensus), but the message will be a commitment to that information; hence, the full node can also
include an opening of this commitment.

Our formal model will not mention blockchains, but it is useful to remember that in blockchain based consensus
systems, often the message is a blockhash, which is a binding commitment to multiple types of data:

1. the block header
2. all previous block headers, through parent hashes in block headers
3. the blocks themselves (whose hash is in the header)

We define the required data of a message to be the data that the message is a binding commitment to and
which all full nodes should know. We assume that if a full node sees a message as decided, it must have the
corresponding required data. The required data of messages can overlap among each other and the full node
would not need to store them separately, e.g. two block hashes for blocks in the same chain may have required
data that overlap for a prefix of blocks in the chain, which may be many gigabytes of data.

Consensus Decisions, Validator Sets, Epochs and Consensus Views A message is decided if sufficient signatures
corresponding to validators in the current validator set sign it. However the validator set may change.

We define an epoch as a period of time in which the validator set cannot change. During each epoch, the con-
sensus determines the validator set for the next epoch.

We assume that the validator set size is bounded by some known constant v. Some threshold t of validators are
required to sign a message such that it is considered decided. t may be a function of the size of the validator set

47

of a given epoch, e.g. more than 2/3 of the validators. We assume that the message itself indicates what epoch
it belongs to, and only signatures from validators chosen for that epoch count for whether a message has been
decided or not.

Each full node maintains a consensus view, i.e., its view of the protocol. The consensus view records the view
of the validator set for each epoch, the messages that have been decided and the signatures on those messages.
It also includes the required data for each decided message.

A well-defined function of the consensus view defines its validity. Full nodes should maintain only a valid
consensus view, and must not include in their consensus view messages that would make the respective view
invalid.

Incompatible Messages There are some pairs of decisions that a consensus protocol cannot decide together with-
out breaking validity. If the protocol ensures that honest validators do not sign messages corresponding to both
decisions, then we can make signing such pairs of messages punishable.

Unfortunately the messages themselves need not be enough to judge their incompatibility. For example we would
not want two block hashes to be decided if one is for a block of height 100 and the other is for a block of height
101, and the block of height 100 was not the parent of the block of height 101. However, if incompatibility is
a function of the required data of one or both messages, then, because messages are binding commitments to
their required data, this is still unambiguous for a pair of messages.

Network Model When we need to assume a network model, the one we use is that all parties communicate
only to the adversary, who may forward messages from one party to another when the adversary wants or not
at all. Both our assumptions and our soundness and accountability soundness security definitions assume this
networking model.

The proof of our security properties works in general for asynchronously safe protocols. These have a number of
safety properties which hold with asynchronous networking. Asynchronous networking means that the adversary
decides when a message is delivered but must deliver all messages eventually. For safety properties, those which
have a statement that holds always or never, this is equivalent to our network model.

J.2 A Formal Model for Consensus-based Accountable Light Client Design

We need the following fundamental notions:

– some number k of epochs with ids 1, . . . , k;
– for each epoch id i, 1 ≤ i ≤ k, the validators on the blockchain may agree on a subset of the set of possible

consensus messages Mi;
– associated with each consensus message m there may exist some required data dm ∈ D for some set D; when

such a dm exists, m is a binding commitment to dm;
– a secure aggregatable signature scheme AS as defined in Section A.

Building on the above notions, we also define a valid consensus view.

Definition 6. (Consensus View) A consensus view C for a set of epochs with ids i, ∀i ∈ [k], for some k,
contains for each epoch id i:

– a set PKi of public keys (we may also consider a list of public keys and weights, e.g. proportional to stake,
but we focus here on the equal weight case for simplicity).

– a set {(m,Signers, σ) | m ∈ Mi,Signers ⊆ PKi} where σ is a signature (or an aggregatable signature) on
m and the public key(s) of the signer(s) are Signers.

– some required data dm associated with each message m, such that m is a binding commitment to dm. Note
that some required data associated with different messages may overlap.

48

In addition to the components mentioned above, a consensus view C contains also a genesis state genstate;
as a concrete example, genstate may contain the set of public keys PK1 for the first epoch and their proofs of
possession. For each of the notions contained in some epoch of C as well as for genstate, we say they belong to
C and we simply denote that by “∈ C”.

In the following, we assume that all algorithms processing messages use a common efficient representation that
implicitly includes for each of them an epoch id; this epoch id is retrieved using a function epochid .

Definition 7. (Deciding a Consensus Message) Given a consensus view C, we say a message m ∈Mi is decided
in C if C contains valid signatures from at least some threshold t (e.g., more than 2/3) signers corresponding to
public keys in PKi or, equivalently, a valid aggregatable signature of t signers over m. Additionally, we denote
by (m, dm) ∈decided C the fact that m ∈ C, ∃ dm ∈ C ∩D, dm is the associated required data of m and m has
been decided in C.

Definition 8. (Valid Consensus View) We assume the following three functions used for validation are effi-
ciently computable and they are defined as:

– VerifyData : ∪ki=1Mi ×D → {1, 0} such that it checks the validity of m given the required data dm ;
– HistoricVerifyData : {genstate} × (∪ki=1Mi ×D)n × (∪ki=1PKi)

q → {1, 0} such that it checks the validity of
genstate, some set of n consensus messages and their required data and some set of q public keys;

– Incompatible : ∪ki=1(Mi ×Mi)×D → {0, 1} which given messages m1, m2 and potential required data dm1

for m1 checks the incompatibility.

Let m1, . . . ,mn be all the distinct consensus messages contained in C. Let pk1 , . . . , pkq be all the public keys,
including repetitions, contained in PKi ,∀i ∈ [k]. We say the consensus view C is valid if:

– ∃ dmi ∈ D ∩ C such that VerifyData(mi, dmi) = 1, ∀1 ≤ i ≤ n.
– HistoricVerifyData(genstate,m1, dm1

, . . . ,mn, dmn
, pk1 , . . . , pkq) = 1.

– There exists no pair (i, j), 1 ≤ i, j ≤ k, i ̸= j such that Incompatible(mi,mj , dmi) = 1 or
Incompatible(mj ,mi, dmj) = 1.

– We require that all consensus messages in C are decided according to Definition 7.

We conclude this subsection by defining what we mean by honest validator.

Definition 9. (Honest Validator) An honest full node of a blockchain is one that runs the protocol correctly
starting from the genesis state of the blockchain. It maintains a valid consensus view of the system. An honest
full node is a validator if they produced a public key that is in the set PKi in some epoch i in some consensus
view. An honest validator is an honest full node that is also a validator.

General Light Client Properties Next we define a light client system.

Definition 10. (Light Client System) Let R be a (conditional) NP relation. A light client system involves two
parties - prover and light client (also called light client verifier) - and it implements the following algorithms:

– ppLC ← LC .Setup(R): a setup algorithm that takes the security parameter λ and a (conditional) NP relation
R and outputs public parameters ppLC .

– π ← LC .GenerateProof (ppLC , C,m,R): a proof generation algorithm that takes a valid consensus view C,
a message m decided in consensus view C and a (conditional) NP relation R and generates a proof π.

– acc/rej ← LC .VerifyProof (ppLC ,LC .seed , π,m,R): a proof verification algorithm that takes as input a
genesis summary LC .seed (whose properties are detailed in definition 11), a light client proof π and a
message m and returns acc if π is a valid proof for m and rej otherwise.

We call the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof) a light client system if it fulfils perfect com-
pleteness and soundness as defined below.
Perfect Completeness A light client system is perfectly complete if a full node sees that any message m has
been decided, it can produce a proof that will convince a light client verifier of it. The full node should have a
valid consensus view C that decided m which it can use as input in LC .GenerateProof to obtain a proof π.
The light client verifier will run LC .VerifyProof with input π and this should always accept. Formally, we say

49

(LC .Setup, LC .GenerateProof , LC .VerifyProof) has perfect completeness if for any valid consensus view C
and for any consensus message m decided in C we have that

Pr [LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc | ppLC ← LC .Setup(R),
π ← LC .GenerateProof (ppLC , C,m,R)] = 1

Soundness A light client protocol is sound if, under the assumption that v − f validators in each epoch are
honest, the light client cannot be convinced of a message m unless t− f honest validators have signed m. Here
f = v − t′ is the a bound on the number of adversarial keys. Note that if t − f honest validators sign m and
there are f adversarial keys then additional signatures from these adversarial keys are enough to decide m. If
the message m belongs to epoch k, then we assume that there is a valid consensus view C in which the validator
sets for the first k epochs have t′ honest validator’s public keys. If this holds and less than t−f honest validators
signed m, then an adversary interacting with honest validators should not be able to generate a light client proof
π for m that LC.V erfifyProof accepts.

We say (LC .Setup, LC .GenerateProof , LC .VerifyProof) has soundness if, for every efficient malicious
prover A,

Pr [LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc | ppLC ← LC .Setup(R),
pp ← Parse(ppLC), (π,m,C)← AHonestValidator (pp,R),
CheckValidConsensus(C) = 1,

NumberHonestSigners(m,OGenerateKeypair) < t+ t′ − v

HonestThreshold(t′,OGenerateKeypair , C) = 1] = negl(λ);

where

– the predicate CheckValidConsensus(C) checks if C is valid w.r.t. Definition 8 and outputs 1 in that case
(and 0 otherwise);

– NumberHonestSigner(m,OGenerateKeypair) returns the number of public keys in Qpks from OGenerateKeypair
defined below.

– AHonestValidator represents the adversary A in communication with the honest validators.
– HonestThreshold(t′,OGenerateKeypair , C) checks that at least t′ of the public keys in each PKi of C (for

every epoch i in C), are part of Qpks and outputs 1 in that case (and 0 otherwise).

Finally, we assume that HonestValidator (but not the adversary directly) makes oracles calls to OGenerateKeypair(pp)
(where pp are the public parameters of aggregated signature scheme AS are part of ppLC) defined as

OGenerateKeypair(pp) :

((pk , πPoP), sk)← AS .GenerateKeypair(pp)

Qkeys ← Qkeys ∪ {((pk , πPoP), sk)}, Qpks ← Qpks ∪ {pk , }
Output ((pk , πPoP), sk).

Finally, we define the genesis summary and its properties with respect to a light client system.

Definition 11. (Genesis Summary) Light client verifiers have access to a genesis summary LC .seed , which is
a well defined deterministic function of the genesis state genstate.

Accountable Light Client Properties In the following, we extend our model above to include accountability.
We provide the definition for an accountable light client system which subsumes the light client system definition
given above. An accountable light client has the property that if a full node with a consensus view C that decides
m is given a light client proof π for a message m′ that is incompatible with m, then it should be able to generate
a proof that shows that some validators misbehaved. We need to add two more functions to our light client
definition, the first one for detecting and generating proofs of misbehaviour, the second one for verifying the
proofs of misbehaviour.

50

Definition 12. (Accountable Light Client System) Let R be a (conditional) NP relation. An accountable light
client system implements algorithms (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) where LC .Setup, LC .GenerateProof and
LC .VerifyProof are defined as in 10 and

(i, S,bit, σ,m′′,m′)← LC .DetectMisbehaviour(ppLC , π,m,C,R)

is an algorithm such that it takes a proof π for message m, a consensus view C and a (conditional) NP relation
R; it outputs an epoch id i, a subset of misbehaving signers S ⊆ PKi in the same epoch as messages m′′ and
m′, with m′ decided in C and m′′ signed with signature σ and using bitmask bit against the set PKi and

acc/rej ← LC .VerifyMisbehaviour(ppLC , i, S,bit, σ,m′′,m′, C,R)

is an algorithm which takes the input of LC .DetectMisbehaviour together with a consensus view C and a (condi-
tional) NP relation R and checks if indeed misbehaviour took place such that completeness, soundness, account-
ability and accountability soundness hold, where completeness and soundness are identical to Definition 10 and
accountability completeness and accountability soundness are defined below.

Accountability Completeness A light client protocol has accountability completeness if a full node sees a
light client proof for a message m and it sees that a message m′ has been decided that is incompatible with
m, then it can identify and prove that a fraction of validators (v + v′ − t validators) have misbehaved. The
full node is given a proof π of m. It has a consensus view C that decides m′, from the same epoch as m with
required data dm′ that has Incompatible(m′,m, dm′) = 1. Then it should be able to use LC .DetectMisbehaviour
to generate a proof that at least v+v′−t validators misbehaved, that LC .VerifyMisbehaviour will always accept.

Formally, we say (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) achieves accountability completeness if for every efficient ad-
versary A it holds that:

Pr [LC .VerifyMisbehaviour(ppLC ,LC .DetectMisbehaviour(ppLC , π,m,C,R), C,R) = acc |
ppLC ← LC .Setup(R), (π,m,C)← A(ppLC ,R),
LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc,CheckValidConsensus(C) = 1,

∃ (m′, dm′) ∈decided C, Incompatible(m′,m, dm′) = 1, epochid(m) = epochid(m
′)] = 1− negl(λ)

Accountability Soundness A light client protocol has accountability soundness if an adversary interacting
with a single honest validator cannot prove that the honest validator misbehaved. This holds even if all other
validators are dishonest and the adversary controls the honest validator’s view of the network.

Note that we assume that the adversary interacts with the honest validator, who generates their keys honestly in
turn. The adversary can break accountability soundness if it can win the following game except with negligible
probability. The adversary wins if they can produce an input (i, S,bit, σ,m′′,m′, C) to LC .VerifyMisbehaviour
such that LC .VerifyMisbehaviour accepts, C is a valid consensus view and S contains a public key the honest
validator generated.

Formally, we say (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) achieves accountability soundness if for every efficient adver-
sary A it holds that:

Pr [Gameaccountability−soundness = 1] = negl(λ)

where

51

Gameaccountability−soundness(λ,R) :
Qkeys := ∅
ppLC ← LC .Setup(R)
pp ← Parse(ppLC)

(i, S,bit, σ,m′′,m′, C)← AHonestValidatorOGenerateKeypair

(pp, ppLC)

If LC .VerifyMisbehaviour(ppLC , i, S,bit, σ,m′′,m′, C,R) = rej Return 0

If CheckValidConsensus(C) = 0 Return 0

If S ∩Qpks = ∅ Return 0

Return 1

J.3 Accountable Light Client System Instantiation

We motivate our light client model from J.2 by detailing below instantiations for a light client system that is
accountable light client system. Both are compatible with proof-of-stake based blockchains and, in particular,
Polkadot.

Conventions and Assumptions Before listing our light client systems’ algorithms, we make several notational
conventions:

– We use boldface font for denoting vectors. Furthermore, whenever necessary to avoid confusion, we denote
by Veci(k) the k-th component of vector Veci.

– In the following, unless otherwise stated, when we use R, we mean one of the conditional relations from the
set {Rincl

ba,com ,Rincl
pa,com}.

– Given a valid consensus view C over i epochs, we assume there is a well-defined order on the set PKj

of public keys included in C, ∀j ∈ [i]; hence, in the following, we rename this set by pkj, ∀j ∈ [i] and
interpret it as a vector. Moreover, we instantiate honestly generated keys in pkj with keys generated using
AS .GenerateKeypair as described in Instantiation 7.

– We remind the reader that by Com(pk) we denote the set of two computationally binding polynomial
commitments to the polynomials obtained by interpolating the x components of pk and, respectively, the y
components of pk over a range H of size at least v+1, where v is some maximum number of validators that
the system allows. In our instantiations for (accountable) light client systems, we use the KZG polynomial
commitments, but, as mentioned also in Section F, the general results stated in this section hold for any
binding polynomial commitments with a knowledge-soundness property.

– We assume there is a fixed upper bound v on the number of validators in each epoch and we use v in
the description of our algorithms. At the same time, for compatibility with the SNARKs that we build for
relations Rincl

ba,com and Rincl
pa,com as defined in F.4, when specifically using our Instantiation 5 of CKSR or

when proving our results in this section, we let v equal n− 1, where n was defined in Section 4.6.
– Parse and Transform denote functions performing the respective operations on the (accountable) light client

algorithms’ input in order to obtain the necessary components. Parse and Transform may additionally
depend on the (conditional) relation R under consideration. If that is the case, we explicitly include R.
In particular, Parse and Transform functions which are part of LC .DetectMisbehaviour work only for
R ∈ {Rincl

ba,com ,Rincl
pa,com}.

– The accountable light client systems use functions fx (deriving the public inputs), fthreshold (deriving the
Hamming weight), HammingWeight (deriving the Hamming weight from consensus view elements) and fbit
(deriving the bitmask corresponding to public keys that signed a given message). Before providing these
functions’ definitions, we make the convention that, whenever used as parameters/input to these functions,
bit, apk , b′ and s have the meaning and definition provided in Section 5.

fx(Com(pk),bit, s, apk ,R) =

{
(Com(pk),bit, apk) if R = Rincl

ba,com

(Com(pk),b′, apk) if R = Rincl
pa,com

52

HammingWeight∗(vec) = HammingWeight(vec1, . . . ,vec|vec|−1)

fthreshold(x,R) =

HammingWeight∗(bit) if R = Rincl
ba,com∑ v+1

|block|−1

j=1 HammingWeight(b′
j) + HammingWeight∗(b′

v+1
|block|

) if R = Rincl
pa,com

fbit(C,m, v) = ((biti(k))
v
k=1|| 0, σi),

where i = epochid(m) and ∀ k = 1, . . . , v, if there exists σ ∈ C ∧ AS .Verify(pp,pki(k),m, σ) = 1, we set
biti(k) = 1 and σi(k) = σ, otherwise, we set biti(k) = 0 and σi(k) = _.
Note that for each of our relations Rincl

ba,com and Rincl
pa,com , apk and Com(pk) are public inputs and pk is a

witness. Moreover, for these relations Rincl
ba,com and Rincl

pa,com , we build an accountable light client system.
– We make the following instantiations: genstate is the set of public keys in pk1 and their alleged proofs of

possession; LC .seed = Com(pk1).

The Algorithms The setup algorithm used by the accountable light client system is:

– LC .Setup(R)

(pp, rspk , rsvk)← CKSR.Setup(v)

Return (pp, rspk , rsvk)

The four algorithms that are part of the accountable light client system are:

– LC .GenerateProof (pp, rspk , C,m,R)

Π = (); Σ = ()

i = epochid(m)

For j = 1, . . . , i

If j < i

mj = (j,Com(pkj+1))

Else

mj = m

(bitj, σj) = fbit(C,mj , v)

Σ(j)← AS .AggregateSignatures(pp, (σj(k))
v
k=1)

(πSNARK ,j , apkj ,Com(pkj))← CKSR.Prove(rspk, (pkj(k))
v
k=1, (bitj(k))

v
k=1)

xj = fx(Com(pkj),bitj, s, apkj ,R)
Π(j) = (xj, πSNARK ,j)

Return (Π,Σ)

– LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R)

53

i = epochid(m)

(Π,Σ) = Parse(π);

For j = 1, . . . , i

(xj, πSNARK ,j) = Π(j); (comj ,bitj, apkj) = Parse(xj,R)
If LC .seed ̸= com1

Return rej

For j = 1, . . . , i

If j < i

mj = (j, comj+1)

Else

mj = m

thresholdj = fthreshold(xj,R)
If (CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πSNARK ,j, apkj),bitj) = 0) ∨ (thresholdj < t)

Return rej

Return acc

– LC .VerifyMisbehaviour(pp, i, S,bit, σ,m′′,m′, C)
apk = AS .AggregateKeys(pp, (bit(k) · pki(k))

v
k=1)

(bit′,_) = fbit(C,m
′, v)

Compute Sm′′ = {pki(k) | bit(k) = 1, k ∈ [v]}
Compute Sm′ = {pki(k) | bit′(k) = 1, k ∈ [v]}
If (AS .Verify(pp, apk ,m′′, σ) = 1) ∧ (Sm′′ ∩ Sm′ = S) ∧ (|Sm′ | ≥ t) ∧ (|Sm′′ | ≥ t) ∧
∧ ((m ′, dm′) ∈decided C) ∧
∧ (i = epochid(m

′′) = epochid(m
′)) ∧ (Incompatible(m ′′,m ′, dm′) = 1)

Return acc

Else

Return rej

– LC .DetectMisbehaviour(pp, rsvk , π,m,C,R)

(Π,Σ) = Parse(π)

i = epochid(m)

index = i

m′′ = m

For j = 1, . . . , i

(xj, πSNARK ,j) = Π(j); (apkj , comj) = Parse(xj)

If (LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1) ∧ (∃ min 2 ≤ j ≤ i, comj ̸= Com(pkj))

m′′ = (j − 1, comj); m′ = (j − 1,Com(pkj)); index = j − 1

ElseIf (LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1) ∧ (∀ 2 ≤ j ≤ i, comj = Com(pkj)) ∧
∧ (∃ (aux , daux) ∈decided C) ∧ Incompatible(aux ,m′′, daux) = 1)

m′ = aux

Else Return

bit = Transform(Parse(xindex ,R),R)
Compute Sm′′ = {pkindex(k) | bit(k) = 1, k ∈ [v]}
(bit′,_) = fbit(C,m

′, v)

Compute Sm′ = {pkindex(k) | bit′(k) = 1, k ∈ [v]}
Return (index , Sm′′ ∩ Sm′ ,bit,Σ(index),m′′,m′)

54

Assumptions and Security Proofs We complete our instantiation by proving the security properties of our
light client and accountable light client systems according to definitions introduced in Sections J.2 and J.2.
However, beforehand, we present the assumptions we use, of which there are six classes, i.e., there are assump-
tions about honest validators’ behaviour (B), about consensus (C), about parameters (P), about instantiation
of primitives (S), about genesis state (G) and assumptions about light client integration (I).

The assumptions about honest validators’ behaviour are:

– (B.1.) An honest validator never signs a message m unless it knows some required data dm such that
VerifyData(m, dm) = 1 holds.

– (B.2.) An honest validator never signs a message m such that VerifyData(m, dm) = 1 holds if they have
previously signed m′ such that VerifyData(m′, dm′) = 1 holds and
Incompatible(m,m′, dm) = 1 or Incompatible(m′,m, dm′) = 1 hold.

– (B.3.) An honest validator does not sign any message in Mi unless they have a valid consensus view C (with
Mi ⊂ C) for which their public key is in pki with pki ∈ C.

The assumptions about consensus are:

– (C.1.) The adversary interacting with honest validators should not except with negligible probability be able
to produce both: (i) a valid consensus view C in which at least t′ validators in every epoch are honest that
decides some message m with dm such that VerifyData(m, dm) = 1 and (ii) a valid consensus view C ′ with
the same genesis state as C (in particular, with the same pk1 ⊂ genstate) which decides some message m′

in the same epoch as m, with Incompatible(m, dm,m′) = 1.
– (C.2.) The adversary interacting with honest validators should not except with negligible probability be able

to produce both: (i) a valid consensus view C in which at least t′ validators in every epoch are honest and
(ii) a valid consensus view C ′ with the same genesis state as C (in particular, with the same pk1 ⊂ genstate)
in which there is some epoch i that C and C ′ both reach with pki ̸= pk′

i.

The assumptions about parameters are:

– (P.1.) 2t− v > 0
– (P.2.) t+ t′ > v

The assumption about instantiation of primitives is:

– (S.1.) We instantiate the aggregatable signature scheme AS such that the oracle OSign in Definition 1 (in
particular in the unforgeability property definition), is replaced with OSpecialSign. It is easy to see that if
AS is an aggregatable signature scheme secure according to Definition 1, then AS is also an aggregatable
signature with oracle OSign replaced by OSpecialSign in Definition 1.

The assumptions about genesis state are:

– (G.1.) In a valid consensus view, HistoricVerifyData checks, among others, that a) every pk ∈ pk1 is also
part of genstate, b) that every pk ∈ pk1 is in G1 ,inn and c) that the proofs of possession for each of the
public keys in pk1 pass the verification in AS .VerifyPoP .

– (G.2.) We assume that all honest full nodes and validators have access to the same genesis state genstate
even when the genesis state is generated by a potential adversary.

Before the last class of assumptions, we add two notational conventions in the form of two functions:

– NextEpochKeys(m, dm) returns ⊥ or a list of public keys; if epochid(m) = i, these keys are supposed to be
the public keys of epoch i+ 1.

– IsCommitment(m) returns 0 or 1; IsCommitment(m) = 1 iff there exists some i such that m = (i,Com(pki+1)).

Finally, we make the following light client integration assumptions, i.e., these are assumptions that apply to our
specific light client instantiation:

– (I.1.) If m and m′ are such that epochid(m) = epochid(m
′) and NextEpochKeys(m, dm) ̸= ⊥ and

IsCommitment(m′) = 1 and m′ ̸= (epochid(m),Com(NextEpochKeys(m, dm))) then

Incompatible(m,m′, dm) = 1.

55

– (I.2.) If epochid(m) = i and NextEpochKeys(m, dm) = pki+1, then ValidateData(m, dm) must call
AS .VerifyPoP(pp, pk , πPOP) for each pk ∈ pki+1 and some data πPOP ∈ dm and also check that pk ∈ G1,inn ;
if any of these checks fails, then ValidateData(m, dm) fails.

– (I.3.) An honest validator with a valid consensus view C, does not sign a message m′ with
IsCommitment(m′) = 1 unless there exists a message m decided in C and its required data dm (i.e.,
ValidateData(m, dm) = 1) such that

m′ = (epochid(m),Com(NextEpochKeys(m, dm))).

– (I.4.) If HistoricVerifyData outputs 1 and there exist a message m ∈ C that has been decided in epoch i,
then for all 1 ≤ j < i, (j,Com(pkj+1)) was decided in epoch j.

– (I.5.) If HistoricVerifyData outputs 1 and a message m′ has been decided in C such that
IsCommitment(m′) = 1, then there exist m, dm ∈ C with ValidateData(m, dm) = 1, m decided in C and
epochid(m) = epochid(m

′) such that

pkepochid (m)+1 = NextEpochKeys(m, dm).

We are now ready to state and prove the security properties of our (accountable) light client systems.

Theorem 10. If AS is the secure aggregatable signature scheme defined in Instantiation 7 and if CKSR is the
secure committee key scheme defined in Instantiation 5, then, together with the assumptions stated at the begin-
ning of Section J.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof)

as instantiated in Section J.3 is a light client system.

Proof. We include the full proof in Section K.

Theorem 11. If AS is the secure aggregatable signature scheme defined in Instantiation 7 and if CKSR is the
secure committee key scheme defined in Instantiation 5, then, together with the assumptions stated at the begin-
ning of Section J.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof ,

LC .DetectMisbehaviour , LC .VerifyMisbehaviour) as instantiated in Section J.3 is an accountable light client
system.

Proof. Due to theorem 10, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) as instantiated in Section J.3 is already a light client system.
It is only left to show that both accountability completeness and accountability soundness also hold and we
include the full details of this proof in Section L.

Corollary 3. In an accountable light client system, the number of misbehaving validators output by
LC .DetectMisbehaviour is |S| and |S| > 0.

Proof. Due to theorem 13 and accountability completeness, given a valid consensus view C, a verifying light
client proof π for a message m′′ and given the existence in C of a message m′ incompatible with m′′, the number of
validators that LC .DetectMisbehaviour is able to catch is at least |S|. Moreover, due to accountability soundness,
any public key output by LC .DetectMisbehaviour , e.w.n.p., belongs to a misbehaving validator. Finally, using
again accountability completeness and, in particular, since LC .VerifyMisbehaviour accepts with overwhelming
probability the output of an honest party running LC .DetectMisbehaviour and due to assumption (P.1.) it holds
that:

|S| = |Sm′ ∩ Sm′′ | = |Sm′ |+ |Sm′′ | − |Sm′ ∪ Sm′′ | ≥ t+ t− v > 0.

K Postponed Security Proof for Light Client Systems

In this section we prove the following theorem:

Theorem 12. If AS is the secure aggregatable signature scheme defined in instantiation 7 and if CKSR is the
secure committee key scheme defined in instantiation 5, then, together with the assumptions stated at the begin-
ning of Section J.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof)

as instantiated in Section J.3 is a light client as formalised by Definition 10.

56

Proof. Perfect Completeness: Let m be a message decided in some epoch i of a valid consensus view C. Since C
is a valid consensus view, this implies HistoricVerifyData outputs 1. Adding that m has been decided in epoch
i and using assumption (I.4.), we have that for each previous epoch j ∈ [i− 1], (j,Com(pkj+1)) was decided in
epoch j; we denote this as property (∗). Since

IsCommitment(j,Com(pkj+1)) = 1,∀j ∈ [i− 1]

holds and using assumptions (I.5.), (I.2.) and (G.1.), we conclude the proofs of possession for each of the public
keys in pkj, j ∈ [i] pass the verification AS .VerifyPoP (property (∗∗)) and, as a consequence, each of the public
keys in pkj, j ∈ [i] belong to G1 ,inn (property (∗ ∗ ∗)). The main fact we have to show (with the notation used
in the description of LC .VerifyProof), is that the following two predicates hold:

AS .Verify(pp, apkj ,mj ,Σ(j)) = 1,∀j ∈ [i] (1)

and
thresholdj ≥ t, ∀j ∈ [i] (2).

Indeed, (1) holds due to perfect completeness for aggregation for secure signature scheme instantiation AS
which applies because: (a) for every epoch j ∈ [i], as computed by LC .GenerateProof , each of the individ-
ual signatures aggregated into Σ(j) passes AS .Verify , (b) the aggregation Σ(j) is computed correctly as per
LC .GenerateProof , (c) the proofs of possession have been checked for each of the public keys in pkj, ∀j ∈ [i]
(see property (∗∗)), and, finally, (d) the aggregation of public keys denoted by apkj , ∀ j ∈ [i], has been computed
correctly as (bitj(k) · pkj(k))

v
k=1 due to property (∗ ∗ ∗) and the perfect completeness of the SNARK scheme

for relation R invoked by the instantiation of CKSR.Prove.
Moreover, due to definition of fthreshold and the fact that mj = (j,Com(pkj+1)),∀j ∈ [i− 1] and, respectively,
mi = m have been decided in their respective epochs as per (∗), we have that (2) holds.

Finally, using (1), letting ckj = comj = Com(pkj+1), ∀ j ∈ [i] and since ∀ j ∈ [i], πSNARK ,j , apkj and ckj are
honestly computed as described by LC .GenerateProof and invoking the perfect completeness property of the
CKSR committee key scheme, we obtain that

CKSR.Verify(pp, rsvk ,Com(pkj+1),mj ,Σ(j), (πSNARK ,j , apkj),bitj) = 1,∀j ∈ [i] (3).

In turn, the fact that (2) and (3) hold with probability 1 immediately implies

LC .VerifyProof (ppLC ,LC .seed ,LC .GenerateProof (ppLC , C,m,R),m,R) = acc

with probability 1 (q.e.d.).

Soundness: In order to prove soundness, we first state and prove the following:

Proposition 1. Given an efficient adversary A as defined in the soundness game (Definition 10) and let
(π,m,C) be its corresponding output.

Let i = epochid(m). Assuming that

LC .VerifyProof (ppLC ,LC .seed ,m,R) = acc

and CheckValidConsensus(C) = 1 and HonestThreshold(t′,OGenerateKeypair , C) = 1 (i.e., the light client
proof π is accepted, C is a valid consensus view as per Definition 8 and for each epoch k in C, PKk contains
at least t′ honest validators), then:

– Statement A(j): For j < i, assuming further that comj = Com(pkj), then there exists some honest validator
whose key is in pkj such that it signed mj = (j,Com(pkj+1)), except with negligible probability.

– Statement B(j): For j < i, if an honest validator whose key is in pkj signed mj with
epochid(mj) = j and IsCommitment(mj) = 1 then mj = (j,Com(pkj+1)).

Proof. (Proposition) We prove the proposition above by induction. Moreover, we prove the proposition only
for R = Rincl

ba,com . The proposition can be proven analogously for R = Rincl
pa,com . Proving the base case, namely

that A(1) holds under the assumption G.1. and proving that A(j) holds if B(j − 1) holds follows a very similar

57

proof structure hence we give complete details only for the latter and add only the differences for the former.
We complete the induction step by proving that if A(j) holds then B(j) holds.

First proof of the induction step: Assume that statement B(j − 1) holds. We have to prove that A(j) holds.
Due to the assumption that the light client proof π is accepted and due to the definition of step j in algorithm
LC .VerifyProof , we have that properties (1) and (2) as described below hold, except with negligible probability,
where

(CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πSNARK ,j, apkj),bitj) = 1) (1)

and

(thresholdj ≥ t) (2)

Due to instantiation 5, (1), in turn, is equivalent to properties (3) and (4) holding, except with negligible
probability, where:

AS .Verify(pp, apkj ,mj ,Σ(j)) = 1 (3)

and

SNARK .Verify(rsvk , (comj ,bitj||0, apk), πSNARK ,R) = 1 (4)

By the knowledge soundness property of the hybrid model SNARK for relationR and algorithm SNARK .PartInputs
defined in Section F (where c(pkj) = incl(pkj) = 1 iff pkj ∈ Gn−1

1 ,inn holds) and since (4) holds and since
pkj ∈ Gn−1

1 ,inn holds as a consequence of the fact that the proofs of possession for each of the public keys in pkj

pass the verification in AS .VerifyPoP (which, in turn, holds since B(j−1) holds plus due to integration assump-
tions I.1.- I.3. and the definition of IsCommitment), it means that, extractor E (as described in Definition 4 can
extract w such that

(xj = (comj ,bitj||0, apkj), w = pk′) ∈ R,

except with negligible probability. In particular, this means apkj =
∑n−1

k=1 bitj(k) · pk′(k) and Com(pk′) =
comj . By the computational binding of the KZG commitment used in defining comj and by the fact that
comj = Com(pkj) by assumption (i), we obtain that pk′ = pkj, hence

apkj =

n−1∑
k=1

bitj(k) · pkj(k) (5)

which, in turn, by the definition of aggregatable signature scheme AS in instantiation A is equivalent to:

apkj = AS .AggKeys(pp, (pkj(k))
n−1
k=1) (6)

Next, we look at (2) which is equivalent to HammingWeight∗(bitj) ≥ t (7); (7) together with the fact that
there are at least t′ honest validators in pk (since HonestThreshold(t′,OGenerateKeypair , C) = 1) and the
assumption P.2. that t + t′ ≥ v = n − 1, we obtain that there exists at least an honest validator in pkj whose
public key is aggregated into apkj . We denote this as property (8).

Finally, it is clear that due to (3), (6), (8) and since the proofs of possession for each of the public keys in pkj

pass the verification in AS.VerifyPoP (in turn, since B(j−1) holds and due to integration assumptions I.1.- I.3.
and the definition of IsCommitment), the statement A(j) becomes equivalent to showing that the advantage
Advmultiforge

Asound
(λ) in the following game is negligible (9), where, in general,

Advmultiforge
A (λ) = Pr [Gamemultiforge

A (λ) = 1]

58

and

Gamemultiforge
A (λ) :

pp ← AS .Setup(auxAS)

((pk∗
k, π

∗
k,PoP), sk

∗
k)

t′

k=1 ← AS .GenKeypair(pp)

Q← ∅

((pkk , πk,PoP)
u
k=1,m, asig)← AOMSign(pp, (pk∗

k , π
∗
k,PoP)

t′

k=1)

If ∃ k ∈ [t′], pk∗
k /∈ {pki}ui=1 ∨ (m, pk∗

k) ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

apk ← AS .AggKeys(pp, (pki)
u
i=1)

Return AS .Verify(pp, apk ,m, asig)

and

OMSign(mk, pk
∗) :

If pk∗ ∈ Qkeys|pk

σj ← AS .Sign(pp, sk∗,mk)

Q← Q ∪ {(mk, pk
∗)}

return σk

Else

return

and Asound is defined such that asig = Σ(j), m = mj , apk = apkj and the public keys output by Asound are
the non-zero public keys from the vector (bitj(k) · pkj(k))

n−1
k=1 .

We prove statement (9) by contradiction: if we assume the advantage Advmultiforge
Asound

(λ) is non-negligible, then,
using a standard hybrid argument and reducing the game Gamemultiforge

A (λ) to the game
GameforgeA (λ) as per Definition 1, the advantage Adv forge

Asound
(λ) is also non-negligible; however, this, in turn, con-

tradicts the fact that the instantiation AS is an unforgeable aggregatable signature scheme, hence our proof for
A(j) is complete.

Observation: In the case of the proof for A(1), the only difference is that the proofs of possession for each of the
public keys in pk1 pass the verification in AS .VerifyPoP by assumption G.1. By the definition of aggregatable
signature scheme AS , as the consequence, pk1 ∈ Gn−1

1 ,inn .

Second proof of the induction step: Assume that statement A(j) holds. Assume by contradiction that B(j) does
not hold, i.e., an honest validator HVal whose key is in pkj signed mj such that IsCommitment(mj) = 1 and
mj ̸= (j,Com(pkj+1)) (we call this property (10)).
Due to assumption I.3, HVal does not sign mj unless HVal has a valid consensus view C ′ deciding a message
m′ with required data dm′ and mj = (j,Com(NextEpochKeys(m′, dm′)) (we call this property (11)). By (10)
and (11) and the fact that the commitment scheme used to compute Com(·) is binding, we obtain:

NextEpochKeys(m′, rm′) ̸= pkj+1 (12).

By assumptions I.3. and I.4, there exists in epoch j of valid consensus view C some decided message m′
j with

epochid(m
′
j) = j and m′

j = Com(pkj+1). Then, by assumption I.1, m′
j and m′ are incompatible. This, in turn,

contradicts assumption C.1. combined with assumption G.2. since C and C ′ decided in epoch j messages m′
j

and m′, respectively. Hence our initial assumption is false and B(j) is proven to hold. And our proposition proof
is complete.

We are now able to prove the soundness property. Given an efficient adversary A as defined in the soundness
game (Definition 10) and let (π,m,C) be its corresponding output. Let i = epochid(m). Assuming that

LC .VerifyProof (ppLC ,LC .seed ,m,R) = acc

59

and CheckValidConsensus(C) = 1 and HonestThreshold(t′,OGenerateKeypair , C) = 1, then, using the propo-
sition above, we obtain that statement B(i− 1) holds. Then, letting mi = m and with an analogous reasoning
used for proving the induction step, namely that A(j) holds when B(j) holds (please see proof above) we are
able to conclude that m was signed by an honest validator only with negligible probability (q.e.d).

L Postponed Security Proof for Accountable Light Client Systems

In this section we prove the following theorem:

Theorem 13. If AS is the secure aggregatable signature scheme defined in instantiation 7 and if CKSR is the
secure committee key scheme defined in instantiation 5, then, together with the assumptions stated at the begin-
ning of Section J.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof ,

LC .DetectMisbehaviour , LC .VerifyMisbehaviour) as instantiated in Section J.3 is an accountable light client
system.

Proof. Due to theorem 10, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) as instantiated in Section J.3 is already a light client system.
It is only left to show that both accountability completeness and accountability soundness also hold. Indeed:

Accountability Completeness: Let A be an efficient adversary that on input ppLC and R outputs π, m and C.
It is easy to see that if the descriptions of LC .DetectMisbehaviour and LC .VerifyMisbehaviour are followed
honestly, then the predicate Sm′′ ∩Sm′ = S checked in the end of LC .VerifyMisbehaviour is fulfilled. Moreover,
due to the satisfied predicate

LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1 (1)

it holds that all mj , j ∈ [i] (as defined in LC .VerifyProof) are decided in C. Due to the way m′ and m′′

are computed by LC .DetectMisbehaviour from the messages (mj)
i
j=1, this implies |Sm′ | ≥ t, |Sm′′ | ≥ t and

(m ′, dm′) ∈decided C and
Incompatible(m ′′,m ′, dm′) = 1.

We are only left to show that
AS .Verify(pp, apk ,m′′, σ) = 1 (∗)

holds with overwhelming probability. Indeed, since (1) holds then, for every epoch j ∈ [i] it holds that

CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πj, apkj),bitj) = 1 (2).

In particular, (2) holds for j = index . Due to soundness property of the committee key scheme CKSR, since
comindex = Com(pkindex) by the definition of index and LC .DetectMisbehaviour , since

apkindex = AS .AggKeys(pp, (bitindex(k) · pkindex(k))
v
k=1)

as computed by LC .DetectMisbehaviour , since also m′′ = mindex (with mj ,∀j ∈ [i] defined in LC .VerifyProof
and index defined in LC .DetectMisbehaviour) and, finally, since Σ(index) = σ, as defined in LC .DetectMisbehaviour ,
it follows that (∗) holds with overwhelming probability (q.e.d.).

Accountability Soundness: Let A be an efficient adversary who interacts with an honest validator. If
LC .VerifyMisbehaviour(pp, i, S,bit, σ,m′′,m′, C) outputs acc (∗), its checks together with completeness for
aggregation imply

AS .Verify(pp, σ′,m′, apkS) = 1 (∗∗),

where

σi(j) =

{
sig if ∃ sig ∈ C,AS .Verify(pp, sig ,m′,pki(j))

_ otherwise

bS(j) =

{
1 if pki(j) ∈ S

0 otherwise

60

σ′ ← AS .AggSigs(pp, (bS(j) · σi(j))
v
j=1),

apkS ← AS .AggKeys(pp, (bS(j) · pki(j))
v
j=1),

Additionally, since (∗) holds and for apk as defined in LC .VerifyMisbehaviour , we obtain

AS .Verify(pp, σ,m′′, apk) = 1 (∗∗′).

Since CheckValidConsensus(C) = 1 holds and m′ has been decided in epoch i of C and dm′ is the required
data associated with m′, due to assumptions (I.5.), (I.4.) and (I.2.) we have that dm′ contains correct proofs of
possession for all keys in pki (∗ ∗ ∗).
We assume by contradiction that S∩Qpks is non-empty with more than negligible probability. Since the following
check (which is part of LC .VerifyMisbehaviour) passes:

Sm′′ ∩ Sm′ = S,

any pk ∈ S is aggregated into apk and also into apkS ; this includes pk∗. Since the aggregate signature instan-
tiation AS is unforgeable (see Definition 1 plus the assumption (S.1.)), due to (∗∗), (∗∗′), (∗ ∗ ∗) and (∗ ∗ ∗∗)
we have that, with more than negligible probability, both m′ and m′′ have been signed by the honest validator.
However, this contradicts that Incompatible(m′,m′′, dm′) = 1 which is ensured by assumption (B.2.). Hence,
our assumption is false and S ∩Qpks = ∅, so the probability defined in the accountability soundness property is
indeed negligible.

M Is our protocol applicable to Ethereum?

We believe that our protocol could not feasibly be directly applied to Ethereum as it is without a hard fork, but
it would be easy to apply it with changes that might feasibly be implemented, even with changes not specifically
designed with our protocol in mind. Ethereum already uses BLS signatures on the BLS12-381 curve in consensus.
To work with BLS12-381, our protocol would use KZG commitments on the BW6-767 curve [48]. Because the
base field of BL12-381 is not highly 2-adic, a prover would need a more complicated FFT algorithm but this is
feasible [48]. We also need an appropriately sized subgroup of the multiplicative field to use for our Lagrange
basis commitments. An easy calculation gives the small prime factors 2, 32, 11, 23, 47, 10177 and 859267 for the
order of the multiplicative group in BLS12-381 and any product of these larger than the number of validators
gives a usable subgroup.

Next we consider who constructs the KZG commitment to the validators public keys. For the shortest
light client proofs validators would construct and sign this commitment, which would require a change to the
consensus logic. As an alternative, a smart contract could compute the commitments on chain. This requires
the EVM to have access to the active validator’s public keys and would also require a precompile for BW6-767
operations to be feasible. We note that there have been many suggestions for adding elliptic curve operations
for different curves to Ethereum (e.g., EIPs 2537, 2538, 3026 [31]) but few have been implemented so far. We
would expect this to be the bottleneck for implementing our protocol on Ethereum.

Finally, we compare running our scheme on the full validator set to Ethereum’s current light client design [21].
That uses a subset of 1024 public keys that changes every epoch (i.e. 64 blocks or 12.8 minutes). It is not
accountable because it would take less than 1024 validators misbehaving to deceive a light client. We remark
that 1024 384-bit public keys is comparable in size to 1 bit for all of Ethereum’s over 500000 validators, and as a
result our light client scheme can be used for an accountable light client with a similar overhead to Ethereum’s
existing unaccountable scheme.

With epochless Casper FFG [23], 64 aggregated signatures are required to represent a single Casper FFG
vote, 2 of which are required for a proof. The form of accountable safety satisfied by Casper FFG [22] suffices
for us: if two forks are finalised, then then 2/3 of the validator set voted on two messages such that signing both
is punishable. One complication of a Casper FFG light client is that valid votes include two blockhashes, one
of which is required to be the ancestor of the other. There needs to be an efficient "proof of ancestry" such as
introducing a more efficient commitment to previous block hashes, e.g., Merkle Mountain Range of blockhashes
as suggested in [24].

61

	Accountable Light Client Systems for Proof-of-Stake Blockchains

