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Abstract

Cross-chain trading is fundamental to blockchains and Decentralized Finance (DeFi). A way
to achieve such trading in a truly decentralized manner, i.e., without trusted third parties, is by
using atomic swaps. However, recent works revealed that Hashed Time-Lock Contract, a key
building block of the existing atomic swaps, is entirely insecure in the presence of user-miner
collusion. Specifically, a user can bribe the miners of the blockchain to help it cheat.

In this work, we give the first and rigorous formal treatment of fair trading on blockchains,
where users and miners may enter arbitrary binding contracts on the side. We propose Rap-
idash, a new atomic swap protocol, and prove its incentive-compatibility in the presence of
user-miner collusion. Specifically, we show that Rapidash satisfies a coalition-resistant Nash
equilibrium absent external incentives. We give instantiations of Rapidash that are compatible
with Bitcoin and Ethereum, and incur only minimal overheads in terms of costs for the users.
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1 Introduction

A major challenge in blockchain technology is ensuring interoperability across multiple blockchains.
Cross-chain trading, which allows users to exchange different cryptocurrencies, is a crucial step in
obtaining such interoperability. While there are multiple ways to achieve such cross-chain trading,
an ideal solution would allow users to trade their coins without relying on a centralized platform and
without using intermediate currencies. Atomic swaps [Her18] achieve exactly that – they allow users
to exchange assets across two blockchains without a trusted third party. The atomicity guarantee
ensures that, in the end, either both users successfully exchange their assets or they retain their
original assets. Atomic swaps are fundamental to many applications, driving significant efforts in
the blockchain community to develop secure and efficient solutions [Her18,MMS+, vdM19,MD19].

Such protocols typically rely on Hashed Time-Lock Contracts (HTLCs). These allow Alice to
sell her secret to Bob, i.e., perform a knowledge-coin exchange. HTLC typically assumes that both
Alice and Bob are aware of the hash derived from Alice’s secret. To assure Bob that the hash truly
corresponds to the correct secret, Alice can give a zero-knowledge proof, such as [PHGR13].1 Then,
Bob deposits v coins into a smart contract. If Alice reveals the preimage of the hash, i.e., the secret,
before a specified timeout T , Alice obtains v coins. Otherwise, after timeout T , Bob can request
his deposit back. In practice, to ensure that only Bob learns the secret, Alice can encrypt the secret
using Bob’s public key and use the encryption of the secret as the preimage, instead of the secret
itself. Current atomic swap implementations [PD16,ln23] work by composing two HTLCs in a way
that lets Alice reveal her secret to get Bob’s coin from the first HTLC. Bob later uses the revealed
secret to get Alice’s coin from the second HTLC.

Unfortunately, MAD-HTLC [TYME21] recently showed that a single HTLC instance is already
incentive-incompatible and vulnerable to very cheap bribery attacks, where a malicious Bob can
bribe the miners to ignore Alice’s transaction until the timeout T and get both the secret and his
money back. This attack renders the atomic swap solution above insecure as well. MAD-HTLC
identified bribe opportunities on the Bitcoin and Ethereum main networks where a few dollars bribe
yielded tens of thousands of dollars in reward. MAD-HTLC proposed a solution that addresses the
bribing attack. Unfortunately, this solution itself opens up new attacks (cf. Section 5). Indeed, as
the authors acknowledge, MAD-HTLC does not provide any provable guarantees in the presence
of general user-miner collusion. Given MAD-HTLC’s deficiency, there seems to be little hope
of achieving secure atomic swaps. However, in this work, we overcome the challenges and build
an atomic swap that is secure under arbitrary user-miner collusion. In particular, our scheme is
secure even if colluding users and miners enter into legally binding side-contracts (even
in the physical world), a much more generic attack vector than the bribery attacks proposed in
MAD-HTLC. Note that general forms of miner-user collusion are not merely a hypothetical problem
– such collusion is prevalent in the real world, especially in the context of miner extractable value,
which has become one of the most important problems in the blockchain community. Middleman
platforms such as Flashbots facilitate such collusion, resulting in a billion-dollar eco-system.

1.1 Our Contributions

We formalize the problem of blockchain-based fair exchange given user-miner collusion (Sec. 2). To
the best of our knowledge, we are the first to give a formal treatment in this area. Towards this,
we adopt the notion of cooperative strategy proofness (CSP fairness) [PS17a,CGL+18,WAS22]. It
guarantees that, absent external incentives, any coalition of players is incentivized to play honestly

1A similar strategy is used in, e.g., zero knowledge contingent payments [CGGN17].
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as long as the coalition does not control 100% of the mining power. In other words, honest behavior
is a coalition-resistant Nash equilibrium.

To build a CSP-fair atomic swap, we first build a new knowledge-coin exchange protocol,
RapidashKC. It achieves the same functionality as an HTLC, but can be formally proven to
satisfy CSP fairness (Section A, also see the proof intuition in Section 3). While RapidashKC
is a key building block in our atomic swap, we show that surprisingly, the naive composition of
two RapidashKC instances does not result in a secure atomic swap scheme (Section 4). Instead,
to obtain a secure atomic swap, we carefully combine central ideas from our RapidashKC in a
non-black-box way with additional techniques.

We show that our solution is practical and compatible not only with the Turing complete
languages such as Ethereum’s Solidity [Eth22], but also with the limited scripting language of
Bitcoin (Section 6.2). For the latter, we rely only on the most commonly used Bitcoin scripts
and exploit Bitcoin’s transaction model. Assuming generic smart contracts, our schemes are very
simple to implement. In Solidity, our atomic swap requires only 252 lines of code, and we deploy
the corresponding smart contracts on the Goerli testnet. We further implement and evaluate
our knowledge-coin exchange RapidashKC, and compare it to HTLC, MAD-HTLC, and He-
HTLC [WSZN23], which aim to achieve similar functionality.

In summary, we make the following contributions:
• We formalize the knowledge-coin exchange and atomic swap problems, and propose definitions
that account for user-miner collusion.

• We give an atomic swap construction that satisfies CSP-fairness. Along the way, we design a
CSP secure knowledge-coin exchange protocol.

• We implement and evaluate our schemes. We give instantiations both for Bitcoin and
Ethereum.

Concurrent work. The concurrent He-HTLC [WSZN23] has results that are closely related to
ours. Both works were initially completed in May 2022, and have undergone several revisions since.
While He-HTLC considers only knowledge-coin exchange, main technical challenges arise in the
atomic swap. In particular, as we show, directly composing two knowledge-coin instances does not
yield a secure atomic swap. Rapidash provides a tailored solution for this problem.

2 Formalizing Blockchain-Based Fair Exchange

2.1 Our Model

Blockchain. We assume that a blockchain is an append-only ledger consisting of a number of
ordered blocks, each of which contains transactions possibly involving money. We call a subset of
the players in the system who are allowed to create blockchain blocks miners. We assume that the
network delay is 0; i.e., posted transactions are seen by everyone immediately. Thus, when miners
choose the transactions to include in a block for time step t, they can see transactions posted at
time t. See “On network delay” in Section 3 for a discussion on network delay. While in a practical
instantiation, each party may also need to pay a small transaction fee for their transaction to be
confirmed, for simplicity, we ignore these fees in our theoretical model since we need not rely on them
to achieve our security guarantees. Adding an ϵ-small transaction fee in a practical instantiation
will only introduce O(ϵ)-slack to our game theoretic guarantees.

We assume that a blockchain provides a way to set up smart contracts, which are modeled as
ideal functionalities that are 1) aware of money; and 2) whose states are publicly observable. A
smart contract can have one or more activation points. Each transaction is associated with a unique
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identifier, and consists of the following information: 1) an activation point of a smart contract, 2) a
non-negative amount of money, and 3) an arbitrary message. When the transaction is executed, the
corresponding activation point of the smart contract is invoked and the computation specified by
this contract takes place, accompanied by the possible transfer of money. Money can be transferred
from and to the following entities: smart contracts and players’ pseudonyms. Without loss of
generality, we may assume that players cannot directly send and receive money among themselves;
however, they can send money to or receive money from smart contracts. The balance of a smart
contract is the difference between the amount of money it has received and sent, and must always
be non-negative.

For simplicity, we assume an idealized mining process; i.e., in each time step t, an ideal func-
tionality picks a winning miner with probability proportional to each miner’s mining power (or
amount of stake for Proof-of-Stake blockchains). Whenever a miner is selected to mine a block,
it can include an arbitrary subset of the outstanding transactions into the block, and order them
arbitrarily. The miner can also create new transactions and include them in the mined block.

Convention for Writing Smart Contracts. We use the following style of pseudo-code to
express smart contracts. ping denotes an empty message.

A toy contract

• Parameters: time T . Alice deposits $da, Bob deposits $db.

Afast: On receiving ping from Alice: send $db to Alice.
Await: After T , on receiving ping from Alice: send $da + $db to Alice.
Bother: On receiving ping from Bob: send $da to Bob.

The leading letter defines the type of the activation point. All activation points of the same
type are mutually exclusive, i.e., if Await has been invoked, neither Afast nor Await can be invoked
anymore. If an activation point constrained some time interval (e.g., after block height T ), then
any attempted invocation outside this interval is deemed invalid and not counted. An activation
point cannot be invoked if the balance is lower than the amount it is supposed to send out. For
example, if Await has been invoked, Bother cannot be invoked anymore.

Above, Alice and Bob each deposit some coins into the contract. Once all deposits are in place,
the contract is active and its activation points can be used. In practice, the contract should allow
each player to withdraw its deposit if the other player has not made its deposit yet. However, once
the contract is active, the distribution of money is only possible through the activation points.

System participants. In addition to the miners, we consider users, who can post transactions,
but do not necessarily participate in block creation. All users and miners are interactive Turing
machines who can send and receive money.

(Adversarial) strategy space. The behavior of a deviating player can be any probabilistic
polynomial time (PPT) algorithm (which takes into account the existence of money). For example,
at any time deviating players can post new transactions or smart contracts, deposit money into
smart contracts, attempt to find hash function preimages, abort from the protocol, or send arbitrary,
even ill-formed messages to other players or smart contracts. Colluding miners about to mine a
block can further, e.g., choose to censor certain transactions.

We explicitly exclude consensus- or network-level attacks — there is an orthogonal and com-
plementary line of work that focuses on this topic [GKL15,PSS17,PS17b].

Coalition. We consider users Alice and Bob, who wish to trade between themselves using
blockchains. Either can form a coalition with some of the miners. We assume that coalition
members share all information they know, e.g., when the secret seller colludes with a miner, the
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miner is assumed to know the secret. Signing keys are also shared inside the coalition.2 The coali-
tion’s strategy space is the union of its members’ strategy spaces. As in standard cryptographic
literature, we do not consider coalitions including both Alice and Bob.

2.2 Game Theoretic Definitions of Blockchain-Based Fair Exchange

We now formalize the properties essential for blockchain-based trading. Our notions use an
application-dependent utility function, which we later specify explicitly for each primitive. In
the following, λ is the security parameter.

CSP fairness. We first review the notion of cooperative strategy proofness (CSP fairness), for-
mulated in [PS17a, CGL+18, WAS22, CS23, SCW23]. Intuitively, CSP fairness is achieved if a
profit-driven coalition that wants to maximize its own utility has no incentive to deviate from the
honest protocol, as long as all other players play by the rules. In this sense, the honest protocol
achieves a coalition-resistant Nash Equilibrium.

Definition 2.1 (CSP fairness). A protocol satisfies γ-CSP-fairness, iff the following holds. Let
C be any coalition that controls at most a γ ∈ [0, 1) fraction of the mining power, and possibly
includes either Alice or Bob. Then, for any probabilistic polynomial-time (PPT) strategy SC of C,
there exists a negligible function negl(·) such that except with negl(λ) probability, we have

utilC(SC , HS−C) ≤ utilC(HSC , HS−C), (1)

where HSC denotes the honest strategy of C, HS−C denotes the honest strategy of anyone other
than C, and utilC(XC , Y−C) is the expected utility of the coalition C when C is executing strategy X
and the remaining players (denoted by −C) execute strategy Y .3

For simplicity, we ignore the transaction fee in our model. When accounting the transac-
tion fee $f , our results can be generalized if Equation (1) is modified as utilC(SC , HS−C) ≤
utilC(HSC , HS−C) +O(f).

Dropout resilience. In blockchain-based trading, it is crucial to provide dropout resilience; i.e.,
to protect an honest player if the counterparty drops out. In practice, such a drop out can happen
due to mistakes, misconfiguration, or unforeseen circumstances; e.g., Alice may lose her hardware
wallet. We define it as follows:

Definition 2.2 (Dropout resilience). A protocol is dropout resilient, iff as long as at least 1/poly(λ)
fraction of the mining power is honest, then with 1− negl(λ) probability, an honest Alice (or Bob)
is guaranteed to have non-negative utility even when Bob (or Alice) is honest but drops out during
the protocol’s execution.

2.3 Defining Knowledge-Coin Exchange

Imagine that Alice has a secret pres and Bob offers to pay Alice $v amount of coins in exchange
for pres. We assume that the secret pres is worth $va and $vb to Alice and Bob, respectively. That
is, Alice loses utility $va if pres is released to someone else, and Bob gains $vb if he learns pres. We
assume that $vb > $v > $va, i.e., Alice has the incentive to sell the secret pres for $v coins.

2This model is standard in both in game theory (when modeling cooperative strategies), and in cryptography
literature. Allowing coalition members to share information and coordinate increases the coalition’s power, thus
making our notions stronger.

3The formal definition of the utility function util is given in Section 2.3 and Section 2.4 in the context of knowledge-
coin exchange and atomic swap, respectively.
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For X ∈ {CSP fairness, dropout resilience}, we say that a knowledge-coin exchange satisfies X,
if it satisfies X with respect to the utility function below.

Utility. Let β ∈ {0, 1} be such that β = 1 if and only if Bob outputs pres at the end of the
protocol. Let $da ≥ 0 and $db ≥ 0 be the amount of money Alice and Bob deposit into the smart
contract, respectively. Let $ra ≥ 0 and $rb ≥ 0 be the payments that Alice and Bob obtain from
all smart contracts during the protocol. Then, Alice’s and Bob’s utilities, $ua and $ub, are defined
as

$ua = −$da + $ra − β · $va, $ub = −$db + $rb + β · $vb.

We further define the utility for the miners. Fix a miner. Let $dm be the money that the
miner deposits into the smart contracts belonging to this protocol, and let $rm be the payment
received by the miner in the current protocol instance. A miner’s utility, denoted $um, is defined
as $um = −$dm + $rm.

Finally, the joint utility of the coalition is simply the sum of every coalition member’s utility.
Let C be any subset of players, and −C to denote all parties of the protocol that are not in C.
Let SC and S′

−C be the strategies of C and −C. We use utilC(SC , S
′
−C) to denote the expected joint

utility of C when C adopts the strategy SC and the remaining parties adopt the strategy S′
−C .

2.4 Defining Atomic Swap

Suppose Bob has xb coins on BobChain (denoted Bxb), and Alice has xa coins on AliceChain (denoted
Axa). Bob wants to exchange his Bxb for Alice’s Axa.

We may assume that Alice and Bob are not in the same coalition. Therefore, we have three
types of coalitions: 1) Alice-miner coalition (or Alice alone); 2) Bob-miner coalition (or Bob alone);
and 3) miner-only coalition.

Given a player or coalition, we assume that it has some specific valuation of each unit of coins
on AliceChain and BobChain. We use the notation $AV(·) to denote the valuation function of Alice
(or an Alice-miner coalition); specifically, $AV(Bxb + Axa) = $vBa · xb + $vAa · xa where $vBa ≥ 0
and $vAa ≥ 0 denote how much Alice or the Alice-miner coalition values each coin on BobChain
and AliceChain, respectively. Similarly, we use $BV(·) to denote the valuation function of Bob (or a
Bob-miner coalition), and we use $MV(·) to denote the valuation function of a miner-only coalition.
In the following, we make the following assumption which justifies why Alice wants to exchange
her Axa with Bob’s Bxb, and vice versa.

Assumption: $AV(Bxb − Axa) > 0, $BV(Axa − Bxb) > 0.

The assumption is necessary to prove CSP fairness as it ensures that no PPT strategy outper-
forms the honest strategy. However, our protocol additionally guarantees that when the honest
case yields negative utility, the best utility a strategic party can achieve is zero — equivalent to
not participating in the protocol. See Theorem B.6 for a detailed discussion.

Finally, we define atomic swap’s utility function.

Utility. Let C be any subset of players, and let SC and S′
−C be the strategies of C and −C. Let

AdAa ,Bd
B
a ≥ 0 be the cryptocurrencies that Alice or an Alice-miner coalition deposit into the smart

contracts; let ArAa ,Br
B
a ≥ 0 be the payment Alice or an Alice-miner coalition receive from all smart

contracts during the protocol. Now, we can define the utility utilC(SC , S
′
−C) when C consists of Alice

or the Alice-miner coalition as follows:

utilC(SC , S
′
−C) = $AV(ArAa − AdAa + BrBa − BdBa ).
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We define AdAb ,Bd
B
b ,Ar

A
b ,Br

B
b analogously for Bob (or the Bob-miner coalition), and ArAm,BrBm,AdAm,BdBm

for the miner-only coalition. We define the utility utilC(SC , S
′
−C) when C consists of Bob or a Bob-

miner coalition as
utilC(SC , S

′
−C) = $BV(ArAb − AdAb + BrBb − BdBb ),

and the utility utilC(SC , S
′
−C) when C is a miner-only coalition as

utilC(SC , S
′
−C) = $MV(ArAm − AdAm + BrBm − BdBm).

3 Knowledge-Coin Exchange

As a first step toward our atomic swap, we design a knowledge-coin exchange allowing Alice to sell
Bob the secret preimage pres of a publicly known hash hs.

3.1 Our Construction

To achieve this, Bob creates a smart contract, and deposits payment $v along with a collateral $cb
into it. The contract will facilitate the exchange of pres for Bob’s money. It is parametrized by
the hash hs and an extra hash hb generated by Bob. To obtain hb, Bob generates preb ← {0, 1}λ
uniformly at random and computes hb = H(preb). Bob holds on to the preimage, but keeps it
secret. We distinguish between: (1) an efficient default path, (2) a refund path to allow Bob
obtain its money back if Alice drops out, and (3) a burn path, which is a novel technique we
introduce to punish misbehavior. We now discuss each case.
Default path. In the default case Alice simply waits until Bob deposited his money and sends
pres to the activation point Pdefault of the smart contract in Figure 1. Pdefault then sends Bob’s
payment to Alice and returns the collateral to Bob. If both players are honest and there are no
network delays, the protocol completes at this point. In the remaining two paths, we ensure that
in case of either misbhavior or unstable network, the honest party is still protected.

Refund path. This path ensures that if Alice did not send pres to Pdefault on time, Bob can
recover his money. To achieve this, a standard HTLC simply has an activation point which returns
Bob’s money upon obtaining a request from him after a deadline T . However, as MAD-HTLC
showed, this is insecure [TYME21]. Briefly, Bob can bribe the miners to ignore Alice’s transaction
to Pdefault (which contains pres), and instead include Bob’s refund transaction. This way, Bob
obtains both the secret and his coins (minus a small bribe) back. To prevent such attacks, we
need to disincentivize Bob from attempting to get a refund once Alice’s secret pres is publicly
known. Towards this, we let Bob generate a hash hb at the beginning of the protocol, and split the
refund process into two steps: First, Bob must announce his intent to obtain a refund by sending
a preimage of hb to an activation point Prefund which can only be triggered after time T1. Then,
after T2 time has passed since the activation of Prefund, Bob can obtain his refund by sending a
message to the activation point Crefund. As we show below, using the helper hash hb in combination
with the timelock on Bob obtaining his refund is key to ensuring that Bob is disincentivized from
misbehaving.

Burn path. The goal of the burn path is to disincentivize parties from misbehaving. Note that
currently, Alice has no incentive to misbehave: She only has the choice of either revealing her
secret and obtaining Bob’s payment, or not revealing the secret and thus forgoing the money. Bob,
however, could attempt to bribe the miners to not include Alice’s transaction for T1+T2 time, and
including his own refund transactions instead. Thus, we must ensure that miners have a “better
choice”. For this, we introduce the bomb – an activation point Cburn, which, given preimages of
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Figure 1: RapidashKC contract.

/* Params: (hs, hb, T1, T2, $v, $cb, $ϵ), Bob deposits $v + $cb. */
Pdefault: On receiving z from Alice s.t. H(z) = hs, send $v to Alice and $cb to Bob.
Prefund: Time T1 or greater: on receiving z from Bob s.t. H(z) = hb, do nothing.
Crefund: At least T2 after Prefund is activated: on receiving ping from anyone, send $v + $cb to Bob.
Cburn: On receiving (z1, z2) from any P s.t. H(z1) = hs and H(z2) = hb, send $ϵ to player P . All remaining

coins are burnt.

both Alice’s hs and Bob’s hb, sends a small amount of Bob’s coins to the party who submitted
these preimages, and burns the rest. Note that if Bob attempts to misbehave after Alice’s secret
is publicly known, as we split the refund path into two parts, both Alice’s and Bob’s preimages
are known after Bob invoked Prefund. Thus, miners have at least T2 time to submit both pres and
preb to Cburn and obtain the reward. Thus, Bob would need to corrupt every miner who mines a
block during this window to ensure that that miner chooses to not activate Cburn. In the following,
we will describe how to set the parameters T2, cb, and the amount of the reward obtained in Cburn

to ensure that it is irrational for Bob to attempt the attack. Similarly, by setting the parameters
in this way we can provably ensure that a malicious Alice is disincentivised from attempting to
activate Cburn instead of the default Pdefault.

RapidashKC contract. We give our formal knowledge-coin exchange smart contract below.
Activation points of the same type are mutually exclusive.

RapidashKC protocol. Informally, we have Bob deposit $v + $cb into RapidashKC (let t = 0
denote the corresponding time), and have Alice post pres as soon as Bob has done so. If Alice has
not posted a valid preimage by deadline T1, Bob submits the refund request to Prefund (and revealing
his secret preb). T2 time after submitting his request, Bob can obtain his refund by sending ping
to Crefund. Further, if anyone knows both pres and preb, they can send those to Cburn to obtain a
small reward ϵ, and burn all remaining coins.

We now give the formal RapidashKC protocol, i.e., the formal description of the sequence of
actions that an honest Alice, Bob, and miner must follow. Note that when we give the description
for Alice, we do not assume that Bob and the miners follow the protocol. The same holds for
Bob.

RapidashKC protocol

Alice: Alice sends pres to Pdefault at t = 0.

Bob: If Alice failed to send pres to Pdefault before T1, Bob sends preb to Prefund at time t = T1. Then, T2 time
after Prefund is activated, he sends ping to Crefund.
If either Pdefault or Cburn is successfully activated, Bob outputs the corresponding pres value included in the
corresponding transaction. Otherwise, Bob outputs ⊥.

Miner: Every miner M watches all transactions posted to Pdefault, Prefund, and Cburn. If M observes the correct
values of both pres and preb in these transactions, it sends (pres, preb) to Cburn. Further, M always includes all
outstanding transactions in every block it mines. If multiple transactions are posted to Cburn, M places its own
ahead of others (thus invalidating the others).

Theorem 3.1 (CSP fairness and dropout resilience). Suppose that the hash function H(·) is a one-
way function and that all players are PPT machines. Moreover, suppose that $cb < $ϵ, $ϵ < $v, and
γT2 ≤ $cb

$cb+$v . Then, the RapidashKC protocol satisfies γ-CSP-fairness and dropout resilience.

The formal proof of Theorem 3.1 is given in Section A. Here, we outline the intuition behind
the parameter constraints. Briefly, burning a large part of Bob’s collateral in Cburn disincentivizes
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Bob from attempting to get both the secret and the refund. To formally achieve security against
general user-miner collusion, we set the parameters with respect to the following constraints.

• $cb < $ϵ, and $ϵ < $v: the former ensures that a sufficient amount is burnt should the bomb
Cburn be triggered, and thus activating Prefund + Cburn does not make sense for Bob; the latter
ensures that Alice prefers to activate Pdefault rather than Cburn.

• $γT2 ≤ $cb
$cb+$v where γ is an upper bound on the fraction of mining power controlled by the

coalition: If the honest Alice posts pres to Pdefault, this condition ensures that it is not worth
it for the Bob-miner coalition to gamble and attempt to invoke both Prefund and Crefund to
get Bob’s deposit back. As in this case after invoking Prefund both pres and preb are publicly
known, the coalition must mine all blocks within the next T2 window to guarantee that Crefund

is invoked. Otherwise, any non-colluding miner who mines a block during this window will
trigger the bomb Cburn.

On network delay. For simplicity, we assume that the network delay δ is zero, and honest miners
always include honest players’ transactions in the next block. In RapidashKC, T1 is to ensure
that Bob does not try to activate the refund path too early given Alice’s transaction is delayed; and
T2 is to ensure that at least one non-colluding miner proposes a block among T2 blocks with high
probability. In practice, if the delay δ > 0, we can choose the parameters such that T1 is larger
than δ plus the time required for Alice’s transaction to be included in a block, and $γT2−δ ≤ $cb

$cb+$v
to account for the delay.

On burning coins. Burning money is adopted by major cryptocurrencies to incentivize honest
behavior. For example, Ethereum’s EIP1559 transaction fee mechanism burns all the base fees.
While we use burning as a crucial component in our construction, we emphasize that the burning
logic is only triggered if either Alice or Bob misbehaves. Our construction incentivizes players to
behave honestly, so the burning logic should not be invoked in the equilibrium state.

Concrete parameter examples. Suppose we choose $cb = $v. Then, we need to make sure
γT2 ≤ 1

2 . This means that if γ = 90%, we can set T2 = 7; if γ = 49.9%, we can set T2 = 1.
Asymptotically, for any γ = O(1), T2 is a constant. Increasing $cb helps to make T2 smaller. For
CSP fairness to hold, $ϵ can be arbitrarily small. However, as we discuss later when analyzing the
coalition-forming meta-game (see Section 5), we may want $ϵ to be not too small, such that 100%
coalition is not an equilibrium in the coalition-forming meta-game. In practice, we can set $ϵ to be
slightly smaller than $v.

Comparison to He-HTLC and MAD-HTLC. The knowledge-coin exchange of the concurrent
work He-HTLC is conceptually similar to ours. The difference is that in He-HTLC’s path which
is equivalent to our Cburn, player P obtains $cb (instead of our $ϵ). Same as ours, their solution
allows to fine-tune the collateral, i.e., there is a trade-off between the collateral size and the time
that this collateral is locked for. For the example above, with $cb = $v and γ = 90%, assuming the
transaction fees are zero, we estimate the He-HTLC’s equivalent of T2 to be 11 (for us it was 7).
For the example with γ = 49.9%, we estimate their T2 to be 2 (vs. 1 for us). Finally, we note that
there is a bug in the Bitcoin evaluation of He-HTLC. For completeness, we give a short description
in Remark 6.1.

For MAD-HTLC, the collateral can be any non-zero amount (again assuming that transaction
fees are zero). However, MAD-HTLC’s security guarantees do not match those of He-HTLC and
ours. MAD-HTLC defends only against a very specific bribery attack, and as admitted by the
MAD-HTLC authors (Sec. 8 of [TYME21]), it does not defend against general user-miner collusion
where users and miners can enter into arbitrary binding contracts.
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4 Atomic Swap

4.1 Naive Composition

Say Alice holds Axa coins on AliceChain, and wishes to trade them for Bob’s Bxb from BobChain.
Consider naively composing two knowledge-coin exchange instances: First, Alice generates a preim-
age pres (in contrast to knowledge-coin exchange, there is no secret knowledge to be sold) uniformly
at random, and publishes its hash hs. Then, Alice deposits the prescribed amount of money into
RapidashKC’s contract on AliceChain. Essentially, on this chain Alice acts as the secret buyer in
our knowledge-coin exchange protocol. On BobChain, Bob is one who makes the deposit. On both
chains, the default path Pdefault is locked via hs. The idea is that in order to obtain Bob’s money,
Alice has to publish her preimage pres on BobChain. In doing so, Alice inadvertedly reveals pres
to Bob too, who can use it to get Alice’s coins from AliceChain.

In more detail, we run one instance of RapidashKC on AliceChain, and refer to its activation
points as PA

default, P
A
refund, C

A
refund, C

A
burn. We run another instance on BobChain, and refer to its

activation points as PB
default, P

B
refund, C

B
refund, C

B
burn. Alice deposits the payment Axa and the collateral

AcAa into RapidashKC on AliceChain. Similarly, Bob deposits Bxb + BcBb into the contract on
BobChain.

Then, Alice generates pres, prea ← {0, 1}λ uniformly at random, and Bob generates preb ←
{0, 1}λ uniformly at random. Here, pres is to facilitate the default path of the coin swap, and
prea, preb are for the refund. As before, both parties reveal the corresponding hashes hs, ha, hb.
We use hs to lock both PA

default and PB
default, with the difference that PB

default can be unlocked by
Alice sending a correct preimage, and PA

default can be unlocked by Bob sending a correct preimage.
Intuitively, as Alice needs to send pres to PB

default to obtain her payment from Bob, once she has
done so, everyone (in particular, Bob) will know pres too. Bob can then send it to PA

default on
AliceChain to obtain his payment from Alice.

If Alice drops out, Bob posts preb to PB
refund for a refund. If Bob drops out, Alice asks for a

refund by posting prea to P
A
refund. One can hope that the intuition from the knowledge-coin exchange

works here as well: Once Alice has posted pres to PB
default, a Bob-miner coalition is disincentivized

from posting preb to PB
refund due to the fear of triggering the bomb (similar for Bob and Alice-miner

coalition).

Vulnerability in the naive composition. Unfortunately, this intuition does not hold. The issue
is that an Alice-miner coalition can wait for Bob to make the deposit, and instead of posting pres
to BobChain, first get refunded on AliceChain. Of course, in response Bob will try to get his refund
on BobChain. However, Alice-miner coalition can attempt to defer Bob’s refund transaction, and
now attempt to invoke PB

default by revealing pres. At this point, pres by itself is worth nothing to
Bob, as pres in this construction is simply the means to obtain the money on each chain, and the
contract on AliceChain has been emptied out already. Thus, if successful, the Alice-miner coalition
gets Bob’s Bxb for free!

Alice can launch such attack by posting the following contract at the beginning: Alice will pay
$r > $ϵ to the miner who invokes PB

default by using pres. For any miner with γ fraction of the
mining power, the probability of being chosen as the block producer to invoke PB

default is γ. Thus,
the expected utility of joining Alice’s coalition, deferring Bob’s refund transaction, and trying to
invoke PB

default is γ · $r. Let $f be the maximum transaction fee a miner can get in expectation if it
selects Bob’s transaction. As long as γ · $r > $f , the miner with at least γ fraction of the mining
power is incentivized to join Alice’s coalition.4

4This attack is just an example. How to censor a user’s transaction in the context of HTLC is described in
[TYME21,WHF19].
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Second Attempt. To fix this, we must disincentivize Alice from refusing to post pres to PB
default

at the right time, but attempting to later invoke PA
refund. To achieve this, we utilize the fact that

if Alice fails to post pres, an honest Bob posts preb, and we allow the bomb CA
burn to be triggered

with the pair (prea, preb).
Unfortunately, now we cannot guarantee dropout resilience for Alice: If Alice’s deposit transac-

tion takes too long to confirm, Bob will attempt to get refunded by posting preb to PB
refund. Suppose

Bob drops out at this point. In this case, whenever Alice’s deposit transaction is finalized, Alice
cannot get her own deposit back since if she posts prea to PA

refund, it will trigger the bomb CA
burn.

Intuitively, the key challenge is finding the right balance for how easy it is for a user to withdraw
its deposit. If it is too easy, then it becomes risk-free to attack the other user. If it is too difficult,
the protocol may not satisfy dropout resilience anymore. Next, we explain how we resolve the
tension by introducing another hash to lock the deposits for both users.

4.2 Our Construction

To address the issues above, we introduce a “two-phase preparation” stage. Initially, PB
default and

CB
burn are locked with a hash hc of a value prec ← {0, 1}λ generated by Bob. Bob publishes prec if

the deposits into both contracts take effect in a timely manner. Once prec is published, Alice must
post pres immediately. Now, we can distinguish between the case where the deposit transactions
take too long and the case where Alice is malicious, and let Bob act accordingly:
• If the deposit transactions take too long to confirm, before posting preb to PB

refund, Bob will post
ping to PA

refund (see contract below). The ping from Bob acts as an alternative way to invoke
PA
refund on the path of Alice getting her deposit back. This resolves our prior dropout resilience

issue where Alice could not get her deposit back once Bob has posted preb, as now Alice does
not need to send prea to PA

refund anymore. Note that it is safe for Bob to help Alice get refunded
before getting refunded himself because he has not released prec yet, and thus no one else can
cash out his coins in Rapidash.

• If Bob has already opened the lock with prec, then, should the honest Bob ever post preb to
PB
refund, it must be due to Alice’s failure to post prea to PA

default, meaning that Alice is acting
dishonestly. In this case, Bob does not help Alice get her deposit back.
We now present the formal smart contracts and protocol for our atomic swap. All times are

expressed in the time of the respective chain. As before, activation points of the same type are
mutually exclusive. Moreover, the activation points can be triggered only if the contract is
active, i.e. both parties have deposited.

RapidashB

/* Params: (hs, hb, hc, T
B
1 , τ

B, Bxb, BcBb ,BϵB), Bob deposits Bxb +BcBb . */

P B
default: On receiving z1 from Alice and z2 from Bob such that H(z1) = hs and H(z2) = hc, send Bxb to Alice

and BcBb to Bob.

P B
refund: Time T B

1 or greater: On receiving z from Bob such that H(z) = hb or on receiving ping from Alice, do
nothing.

CB
refund: At least τB after P B

refund is activated: on receiving ping from anyone, send Bxb +BcBb to Bob.

CB
burn: On receiving (z1, z2, z3) from anyone P such that H(z1) = hs, H(z2) = hb, and H(z3) = hc send BϵB

to player P . All remaining coins are burnt.

RapidashA

/* Params: (hs, ha, T
A
1 , τ

A,Axa,AcAa,AϵA), Alice deposits Axa +AcAa, Bob deposits AcAb */

P A
default: On receiving z from Bob such that H(z) = hs or on receiving ping from Alice, send Axa +AcAb to Bob
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and AcAa to Alice.

P A
refund: Time T A

1 or greater: on receiving z from Alice such that H(z) = ha or on receiving ping from Bob, do
nothing.

CA
refund: At least τA after P A

refund is activated: on receiving ping from anyone, send Axa +AcAa to Alice and AcAb
to Bob.

CA
burn: On receiving either (z1, z2) where H(z1) = hs and H(z2) = ha, or (z2, z3) such that H(z2) = ha and

H(z3) = hb from any P , send AϵA to P . All remaining coins are burnt.

The parameters above must respect the following parameter constraints.
• Constraints for RapidashB (on BobChain):

– hs = H(pres), hb = H(preb) and hc = H(prec).

– TB
1 > TB

0 > TB > 0, where TB
0 and TB will be introduced later.

– Bxb > BϵB > B0, and BcBb > BϵB

• Constraints for RapidashA (on AliceChain):

– hs = H(pres) and ha = H(prea).

– AliceChain time TA
1 > BobChain time TB

1 , i.e., AliceChain block of length TA
1 is mined

after the BobChain block of length TB
1 .

5

– AϵA > A0, AcAa > AϵA and AcAb > AϵA.

• Choice of timeouts:

– τB ≥ 1, τA ≥ 1.

– γτ
A ≤ AcAa

AcAa+Axa
, γτ

B ≤ BcBb
BcBb+Bxb

We provide the protocol i.e., description of the behavior for the honest parties. The moment
that both contracts have been posted and take effect is defined to be the start of the execution
(i.e. t = 0). Let BobChain time 0 and AliceChain time 0 be the length of BobChain and AliceChain
when the execution starts, respectively. Note that whenever parties are required to “Wait”, they
wait until the specified event happens, and then execute the corresponding action. When they start
waiting, they also verify whether (one of) the specified events took place already, and execute the
corresponding action if this is the case.

Atomic Swap Protocol — Alice
Preparation Phase:
1. At t = 0, Alice sends the deposit transaction of Axa +AcAa to RapidashA;
2. Wait until one of the following happens:

• Either RapidashB or RapidashA has not been active, and it is at least BobChain time T B: Alice enters
the abort phase.

• Bob has not sent prec to P B
default, and it is at least BobChain time T B

0 : Alice enters the abort phase.
• Bob sent prec to P B

default and it is before BobChain time T B
0 : Alice enters the execution phase.

Execution Phase:
1. Alice sends pres to P B

default. As soon as P B
default has been activated, Alice sends ping to P A

default.
2. If τB BobChain time has passed since P B

refund is activated, Alice sends ping to CB
refund. (Note that as soon as

CB
refund is activated, Bob sends ping to P A

refund.)
3. If τA AliceChain time has passed since activating P A

refund, Alice sends ping to CA
refund.

Abort Phase:
1. At BobChain time T B

0 , Alice sends ping to P B
refund.

2. Wait until BobChain time T B
1 . If Bob has not sent ping to P A

refund, Alice sends prea to P A
refund.

3. If τA AliceChain time has passed since P A
refund is activated, Alice sends ping to CA

refund; similarly, if τB BobChain

5In practice, this constraint should be respected except with negligible probability despite the variance in inter-
block times.
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time has passed since P B
refund is activated, Alice sends ping to CB

refund.
Ignore all other events.

Atomic Swap Protocol — Bob
Preparation Phase:

1. At t = 0, Bob sends the deposit transaction of Bxb + BcBb to RapidashB and sends the
collateral transaction of AcAb to RapidashA. a

2. Wait until one of the following happens:

• Both RapidashB and RapidashA enter the execution phase: Bob sends prec to PB
default

and enters the execution phase.

• Either RapidashB or RapidashA has not entered the execution phase, and it is at
least BobChain time T : Bob enters the abort phase.

Execution Phase:

1. Wait until one of the following happens:

• Alice already sent pres to PB
default, and it is before BobChain time TB

1 : Bob sends pres
to PA

default.

• Alice has not sent pres to PB
default, and it is at least BobChain time TB

1 : Bob sends preb
to PB

refund at BobChain time TB
1 .

2. If τB BobChain time has passed since PB
refund is activated, Bob sends ping to CB

refund. As soon
as CB

refund is activated, Bob sends ping to PA
refund.

3. If τA AliceChain time has passed since PA
refund is activated, Bob sends ping to CA

refund.

Abort Phase:

1. At BobChain time TB
0 , Bob sends ping to PA

refund and preb to PB
refund.

2. If τA AliceChain time has passed since PA
refund is activated, Bob sends ping to CA

refund; similarly,
if τB BobChain time has passed since PB

refund is activated, Bob sends ping to CB
refund.

Ignore all other events.

aNotice that only Bob needs to put collateral on both chains.

In the abort phase, we require that the honest Alice and honest Bob to send ping to PB
refund and

PA
refund, respectively, at BobChain time TB

0 even though they would not be triggered until BobChain
time TB

1 and AliceChain time TA
1 , respectively. This gap allows the honest Alice to decide whether

she should send prea to PA
refund or not depending on Bob’s behavior.

Observe that when Alice and Bob are both honest, Alice will post pres to PB
default immediately,

thus enabling Bob to learn pres and post it to PA
default immediately after. Therefore, both players

get their desired cryptocurrency and all their collateral back as soon as new block is confirmed on
both chains.

Finally, we show that CSP-fairness and dropout resilience are satisfied.

Theorem 4.1 (CSP fairness and dropout resilience). Suppose that the hash function H(·) is a
one-way function and that all players are PPT machines. For any γ ∈ [0, 1], if the parameters
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satisfy the constraints, then, the atomic swap protocol satisfies γ-CSP-fairness. The protocol is
further dropout resilient.

Intuition for achieving CSP-fairness. Intuitively, the constraint BϵB < Bxb ensures that
Alice, who does not have collateral in RapidashA, always prefers PB

default to the bomb CB
burn. The

constraint BcBb > BϵB ensures that if Bob gets Alice’s Axa and triggers the bomb CB
burn, he still

loses to the honest case, and the constraint AcAa > AϵA serves a similar purpose. The condition
AcAb > AϵA makes sure that Bob does not want to trigger the bomb CA

burn even when he can get all

of his deposit into RapidashA refunded. Finally, the constraint γτ
B
<

BcBb
BcBb+Bxb

ensures that the

window between PB
refund and CB

refund is sufficiently long such that once the honest Alice has posted
pres, it is not worth it for Bob to take a gamble to trigger PB

refund and CB
refund. In particular, if during

the τB window, any honest miner mines a block, then the bomb CB
burn will be triggered and Bob

will lose his collateral. The condition γτ
A
< AcAa

AcAa+Axa
serves a similar purpose, but now for Alice

and RapidashA. The formal proofs are given in Section B. Concrete parameter examples.

Suppose we choose BcBb = Bxb. Then, we should ensure γτ
B ≤ 1/2. This means that if γ = 90%, we

can set τB = 7; if γ = 49.9%, we can set τB = 1. Asymptotically, for γ = O(1), τB is a constant.
Increasing BcBb makes τB smaller. A similar calculation works for τA and AcAa .

5 Rapidash Disincentivizes a 100% Coalition

So far, to prove our coalition-resistant fairness notions, we assumed that the coalition wields strictly
less than 100% of the mining power. Take the knowledge-coin protocol for example: if Bob can
solicit a coalition of 100% of the mining power, then its best strategy is to wait for Alice to post
pres, and then activate Prefund and Crefund. In this way, Bob and the coalition effectively learns the
secret pres for free.

In this section, we provide some justification about this assumption, and some evidence why
100% coalition is difficult to form in permissionless environment for Rapidash. We also compare
Rapidash with existing approaches like HTLC and explain why existing approaches are susceptible
to a 100% coalition.

5.1 The Meta-Game of Coalition Formation

We argue that in a permissionless proof-of-work setting and under some mild assumptions, Rap-
idash disincentivizes a 100% coalition to form, even in a world where one can post bribery con-
tracts [Bon16, JSZ+21,MHM18,WHF19] or other smart contracts in an attempt to openly solicit
everyone.

More specifically, suppose that 100% of the miners are colluding with Bob through some joint
strategy S, which invokes Prefund and Crefund with some non-negligible probability (since invoking
Prefund and Crefund is the only way for a Bob-coalition to gain). One should think of the strategy as
a general Turing Machine that can adaptively decide how to act based on the view in the protocol
so far.

We make a few mild assumptions for our analysis. We assume that there exists some small
miner i∗ with a relatively small fraction of mining power such that its influence to the block
generation process is small, and moreover, the small miner receives no more than its fair share of
profit if it joined the coalition (where fair means proportional to mining power). We also assume
a permissionless setting where the strategy S cannot tell if all miners have joined and make use
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of this information. Now, if i∗ joins the coalition and cooperates, its expected reward is at most
pγ · $v, where p is the probability Prefund is invoked and γ denotes its mining power. Note that $v
is the coalition’s maximum total gain possible. Now, suppose i∗ chooses to not join the coalition,
since its influence to the block generation process is small, we may assume that Prefund is invoked
with probability p or more. Now, the moment Prefund is activated, i∗ has a T2 lead in time to mine
a block in which i∗ can redeem $ϵ from the Cburn branch. In particular, without loss of generality,
we may assume that every miner in the coalition commits to starving Cburn in every block they
mine, e.g., by placing a collateral that it will honor its commitment — if not, then the coalition
will not be stable since a coalition member will be incentivized to defect from the coalition and
claim Cburn itself. This means that if i∗ mines a block during the T2 window after the activation of
Prefund, i

∗ can claim $ϵ from Cburn for itself. Suppose that T2 > 1. The probability that i∗ mines
a block in a window of T2 length is 1 − (1 − γ)T2 . Therefore, if i∗ do not join the coalition, its
expected gain would be at least p · $ϵ · (1− (1− γ)T2). If i∗ joins the coalition, its expected gain is
pγ ·$v. Thus, as long as p ·$ϵ · (1− (1−γ)T2) > pγ ·$v, i∗’s best strategy is to not join the coalition.
This means that if everyone else joins the coalition, some small user i∗ wants to defect. In other
words, a 100% coalition is not an equilibrium of the coalition-forming meta-game. For example, if
we choose T2 = 2, then it suffices to choose $ϵ > $v · 1

2−γ .
As a special case and sanity check, the parameter constraints above implies that $ϵ > $v/T2.

If $ϵ < $v/T2, Bob would be able bribe every miner that starves Alice’s transaction $v/T2 such
that every miner would want to cooperate — as explained shortly afterwards, the standard HTLC
contract is subject to such a bribery attack.

The above argument is for the knowledge-coin exchange protocol. For our atomic swap protocol,
essentially the same meta-game analysis would apply.

5.2 Comparison with Prior Approaches

Using this coalition formation meta-game perspective, we give a re-exposition of some incentive
attacks for standard HTLC and MAD-HTLC [TYME21].

Meta-games for HTLC. Recall that in a HTLC, Alice can obtain $v by revealing the preimage.
On the other hand, after timeout T , Bob can request his deposit back. Consider the following attack.
Bob can post a bribery contract soliciting participation of miners: if Alice’s redeeming transaction
is censored until Bob claims the $v back through preb, then, Bob will equally re-distribute $(v− ϵ)
to every miner that helped to mine a block that starved Alice’s transaction where $ϵ is a small
amount Bob keeps for himself. Suppose the transaction fees are 0, then every miner’s best strategy
is to join the coalition, and thus a 100% coalition is an equilibrium of the meta-game.

MAD-HTLC. MAD-HTLC attempts to mitigate the attack we described for HTLC. It has Bob
draw a random secret value preb, reveal its hash hb = H(preb), and deposit $v coins in the following
smart contract 6:

MAD-HTLC

• On receiving z1 from Alice such that H(z1) = hs: send $v to Alice.

• After T , on receiving z2 from Bob such that H(z2) = hb: send $v to Bob.

• On receiving (z1, z2) from anyone P such that H(z1) = hs and H(z2) = hb: send $v to P .

6MAD-HTLC has extra logic to defend against a spiteful Bob which we omit for simplicity. This logic does not
mitigate the coalition attacks MAD-HTLC is susceptible to.
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Here, the attack outlined above is not possible, as any miner who sees both Alice’s and Bob’s
transactions (and hence learns both pres and preb) would simply use these to grab the reward $v
for themselves. However, as admitted by the MAD-HTLC authors (Sec. 8 of [TYME21]), MAD-
HTLC does not defend against general user-miner collusion where users and miners can enter into
arbitrary binding contracts. Bob could propose a contract (e.g., on another chain, or even a physical
legally-binding one) to some miners, and as soon as Alice posts pres, if the colluding miners happen
to mine the next block, they can exclude Alice’s transaction and redeem the $v coins for themselves
by posting both (pres, preb). Then, using the binding side contract, the coalition can split off the
$v coins among its members. It could also be that Bob is a miner himself. In this case, if Bob
happens to mine the next block after Alice posts pres, Bob can get the secret for free.

The result of MAD-HTLC can be viewed as follows: by allowing the miner to claim $v itself
through (pres, preb), it removes the undesirable 100%-coalition equilibrium in the coalition for-
mation meta-game — the design of Rapidash is inspired by this elegant idea. Unfortunately,
the design of MAD-HTLC incentivizes coalitions (with binding side contracts) to deviate in the
protocol game itself. As we discussed earlier, Bob colluding with a miner should always deviate:
if it happens to be the miner when Alice posts pres, the coalition should always starve Alice’s
transaction and claim the $v itself by posting (pres, preb).

6 Instantiation and Evaluation

We will now discuss our instantiation of Rapidash. First, we implement and evaluate it given
general smart contracts in Ethereum. Then, we discuss a Bitcoin instantiation.

Table 1: Estimates of Bitcoin transaction sizes for CSP-fair atomic swap.

Contract Activation branch Size (vBytes) Fees (BTC)

RapidashB

PB
default 455 0.0025

PB
refund (ping from Alice) 440 0.0022
PB
refund (Call by Bob) 448 0.0025

RapidashA

PA
default (Call by Bob) 479 0.0027

PA
default (ping from Alice) 471 0.0026
PA
refund (Call by Alice) 437 0.0024

PA
refund (ping from Bob) 429 0.0024

6.1 Ethereum Instantiation.

We implemented our contracts in Solidity, Ethereum’s smart contract language and deployed these
on Goerli testnet. In Ethereum, the price of a transaction depends on its gas usage, which describes
the cost of each operation performed by the smart contract.

6.1.1 Comparison of Knowledge-Coin Exchange.

We compare gas cost of of RapidashKC with those of MAD-HTLC and He-HTLC in Table 2.
The cost of RapidashKC is very similar to the concurrent He-HTLC. The total redeem cost

in the optimistic case in RapidashKC is lower than MAD-HTLC’s, as the latter has Alice obtain
the deposit and Bob retrieve the collateral separately.
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Table 2: Solidity gas cost comparison. (O) denotes the optimistic case.

Contract Redeem path Gas

HTLC
Alice redeem 35,851
Bob redeem 34,932

MAD-HTLC

(O) Alice and Bob 102,505
Refund, Bob 104,611

Deposit bomb, Miner 61,008
Collateral bomb, Miner 46,063

He-HTLC
(O) Alice and Bob 72,723

Refund, Bob 123,337
Collateral bomb, Miner 70,327

Rapidash
(O) (Pdefault), Alice and Bob 73,246

Refund (Prefund + Crefund), Bob 123,543
Bomb (Cburn), Miner 70,327

6.1.2 Evaluation of Atomic Swap.

Our Ethereum atomic swap implementation consists of two contracts, one for RapidashB, and
one for RapidashA. Table 3 details gas costs of all redeem paths. The deployment gas costs of
RapidashB and RapidashA are 1,097,177 and 1,514,861 units, respectively.

6.2 Bitcoin Instantiation

As described earlier, with general smart contracts, users send coins to contracts, the contracts
then hold the coins until some logic is triggered to pay part to all of the coins to one or more
user(s). Instead, Bitcoin uses an Unspent Transaction Output (UTXO) model, where coins are
stored in addresses denoted by Adr ∈ {0, 1}λ and addresses are spendable (i.e., used as input to a
transaction) exactly once. Transactions can be posted on the blockchain to transfer coins from a
set of input addresses to a set of output addresses, and any remaining amount of coin is collected
by the miner of the block as transaction fee.

More precisely, in Bitcoin transactions are generated by the transaction function tx . A trans-
action txA, denoted

txA := tx

(
[(Adr1,Φ1, $v1), . . . , (Adrn,Φn, $vn)],
[(Adr ′1,Φ

′
1, $v

′
1), . . . , (Adr

′
m,Φ′

m, $v′m)]

)
,

charges vi coins from each input address Adr i for i ∈ [n], and pays v′i coins to each output address
Adr ′j where j ∈ [m]. It must be guaranteed that

∑
i∈[n] $vi ≥

∑
j∈[m] $v

′
j . The difference $f =∑

i∈[n] $vi −
∑

j∈[m] $v
′
j is offered as the transaction fee to the miner who includes the transaction

in his block.
An address in Bitcoin is typically associated with a script Φ : {0, 1}λ → {0, 1} which states

what conditions need to be satisfied for the coins to be spent from the address. In contrast to smart
contracts that can verify arbitrary conditions for coins to be transacted, the scripting language of
Bitcoin has limited expressiveness. A transaction is considered authorized if it is attached with
witnesses [x1, . . . , xn] such that Φi(xi) = 1 (publicly computable) for all i ∈ [n]. A transaction is
confirmed if it is included in the blockchain.

Thus, for Bitcoin, the logic of our contracts must be encoded in scripts of addresses where the
scripts are of limited expressiveness and the addresses are spendable exactly once. As we show, our
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Table 3: CSP-fair atomic swap, gas cost. (O) denotes an optimistic case.

Contract Redeem path Gas

RapidashB

Normal path (PB
default), Alice 52,279

Normal path (PB
default), Bob 56,681

Refund path (PB
refund + CB

refund), Bob 123,631
Burn path (CB

burn), Miner 42,266

RapidashA

Input, Alice 50,465
Input, Bob 55,817

Withdraw, Alice 38,228
Withdraw, Bob 35,911

(O) (PA
default), Alice 54,904

(O) (PA
default), Bob 58,656

Refund (PA
refund + CA

refund), Alice 118,379
Refund (PA

refund + CA
refund), Bob 114,647

Burn (CA
burn), Miner 53,431

instantiations only require some of the most standard scripts used currently in Bitcoin.
We largely rely on the following scripts: (1) computation of hash function7 H : {0, 1}∗ → {0, 1}κ,

(2) transaction timestamp verification wrt. current height of the blockchain denoted by NOW8

and (3) digital signature verification. The signature scheme consists of the key generation algorithm
KGen(1λ) generating the signing key sk and the verification key pk, the signing algorithm Sign(sk,m)
generating a signature σ on the message m using sk, and the verification algorithm Vf(pk,m, σ)
validating the signature wrt. pk. 9 We say an address Adr (associated script Φ) is controlled by a
user if the user knows a witness x s.t. Φ(x) = 1.

Remark 6.1 (Bug in the Bitcoin Evaluation of He-HTLC [WSZN23]). We note that there is a bug
in the Bitcoin evaluation of the concurrent He-HTLC, a brief overview of which we provide below.

Intuitively, the given implementation of He-HTLC uses Bitcoin scripts with if-else branches,
where all branches specify the same public keys for the spending transaction. This results in a mix-
and-match attack on the spending transactions as described below. Consider the script specifying
two branches, both of which require the corresponding spending transaction to be signed by two
public keys pkA (of Alice) and pkB (of Bob). Additionally, branch 1 requires a secret value x1,
and branch 2 requires a secret value x2. Take RapidashKC as an example, branch 1 is Pdefault

and branch 2 is Prefund. Logically, whenever Pdefault is activated, the payment should go to Alice.
However, because of an implementation-level bug below, Bob can trigger Pdefault but redirect the
payment to himself. Let Alice and Bob (as they do in He-HTLC) pre-sign transaction tx 1 meant
to invoke branch 1 of the script and redeem coins to Alice, and pre-sign transaction tx 2 meant to
invoke branch 2 and redeem coins to Bob. Now, whenever Alice posts tx 1 with the signatures and
the secret x1 in the network, the malicious Bob can simultaneously post tx 2 with the signatures and
the secret x1. If Bob’s transaction succeeds ahead of Alice’s, Bob can redeem the coins to himself

7κ = 160 in Bitcoin when using the opcode OP HASH160.
8Instantiated using the opcode OP CHECKSEQUENCEVERIFY in Bitcoin checking if the height of the

blockchain has increased beyond some threshold after the script first appeared on the blockchain. It can also
be instantiated with opcode OP CHECKLOCKTIMEVERIFY in Bitcoin that checks if the current height of the
blockchain is beyond a threshold.

9The signature scheme can be instantiated with either Schnorr or ECDSA in Bitcoin. ECDSA signatures are
verified using the opcode OP CHECKSIG and Schnorr signatures via the taproot fork.
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Table 4: RapidashKC’s transactions in Bitcoin. Here ΦB is the script that requires the signature
under Bob’s public key while ΦA is the script that requires the signature under Alice’s public key.

Description

tx stp tx

(
[(AdrB0 ,Φ

B, $v + $cb)],
[(Adr stp,Φstp, $v + $cb)]

)
txPdefault

tx

(
[(Adr stp,Φstp, $v + $cb)],

[(AdrA1 ,Φ
A, $v), (AdrB1 ,Φ

B, $cb)]

)
txPrefund

tx

(
[(Adr stp,Φstp, $v + $cb),

[(AdrPrefund
,ΦPrefund

, $v + $cb)]

)
txCrefund

tx

(
[(AdrPrefund

,ΦPrefund
, $v + $cb)

[(AdrB2 ,Φ
B, $v + $cb)]

)
txCburn

tx

(
[(Adr stp,Φstp, $v + $cb)],

[(Adrburn,Φburn, $v + $cb − $ϵ)]

)
txPrefund

Cburn
tx

(
[(AdrPrefund

,ΦPrefund
, $v + $cb)

[(Adrburn,Φburn, $v + $cb − $ϵ)]

)

when Alice’s secret x1 is revealed. Since tx 1 and tx 2 can be verified by the same public key pair
(pkA, pkB), Bob can use Alice’s secret x1 and transaction tx 2 to trigger branch 1. We emphasize
that this is an implementation-level issue, and their pseudocode does not suffer from the attack.

The issue is resolved if the branches require signatures on different pairs of public keys, namely,
(pk1A, pk

1
B) for branch 1, and (pk2A, pk

2
B). We adopt this approach in our evaluation which is also

the standard mechanism for branched scripts used in Bitcoin Lightning Network.

6.2.1 Instantiating RapidashKC

We provide the list of all transactions in Table 4, the scripts associated with all addresses in Fig-
ure 2, and the relationship between the transactions, addresses, and scripts is depicted in Figure 3.
Basically, Bob uses the transaction tx stp to put his deposit $v + $cb into the address Adr stp. The
script on the address Adr stp allows three ways to spend the deposit:

1. Use pres to pay $v amount to an address AdrA1 owned by Alice, and $cb to an address AdrB1
owned by Bob.

2. After a timeout T1 since the address Adr stp comes into existence, use preb to pay the entire
deposit amount $v + $cb to the address AdrPrefund

, which is associated with the script ΦPrefund
.

ΦPrefund
says that either (1) T2 time has passed after the address came into existence, in which

case the $v + $cb coins in AdrPrefund
can be paid to Bob’s address AdrB2 , or (2) the pair

(pres, preb) is revealed, in which case $v + $cb − $ϵ coins can be paid to some burn address
Adrburn whose private key is known to nobody, and the remaining $ϵ is paid as fee to the
miner who mines the block.

3. Use the pair (pres, preb) to pay $v + $cb − $ϵ amount to some burn address Adrburn whose
private key is known to nobody, the remaining $ϵ is paid as fee to the miner who mines the
block.

To make sure that Alice and Bob cannot unilaterally spend from the address Adr stp, and
AdrPrefund

, their associated scripts require signatures from both Alice and Bob to spend from these
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Φstp(tx , pres, preb, σa, σb)

Pdefault : if (H(pres) = hs) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

Prefund : if ( NOW > T1) ∧ (H(preb) = hb) ∧ (Vf(pk′a, tx , σa) = 1)∧
(Vf(pk′b, tx , σb) = 1) then return 1

Cburn : if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1) ∧ (H(pres) = hs)∧
(H(preb) = hb) then return 1

// Values hs, hb, pka, pkb, T1, pk
′
a, pk

′
b, pk

′′
a , pk

′′
b are hardwired

ΦPrefund
(tx , pres, preb, σa, σb)

Crefund : if ( NOW > T2) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

Cburn : if (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1) ∧ (H(pres) = hs)

∧ (H(preb) = hb) then return 1

// Values T2, hs, hb, pka, pkb, pk
′
a, pk

′
b are hardwired

Figure 2: The description of scripts Φstp and ΦPrefund
. Here tx is the transaction spending from the

script. Keys pka, pk
′
a and pk′′a belong to Alice, pkb, pk

′
b and pk′′b belong to Bob.

addresses. Note also that the transactions txPdefault
, txPrefund

, and txCburn
needed to spend from Adr stp

via activation points Pdefault, Prefund, or Cburn are signed with different public keys of Alice and Bob
for each activation point, i.e., (pka, pkb), (pk

′
a, pk

′
b), and (pk′′a, pk

′′
b ) respectively. This makes sure

that each transaction can invoke only the intended activation point. Similarly for transactions
txCburn

and txPrefund
Cburn

spending from AdrPrefund
.

Protocol flow. Before setting up RapidashKC on the blockchain, Alice and Bob agree on the
setup transaction tx stp. The transaction must be signed by Bob to take effect. However, before
signing tx stp, Alice and Bob agree on and sign all redeeming transactions, i.e., txPdefault

, txPrefund
,

txCrefund
,txPrefund

Cburn
, and txCburn

. Alice and Bob now broadcast all these transactions (not including tx stp)
and both of their signatures — notice that they cannot be published on the Bitcoin blockchain yet
because the addresses they depend on, Adr stp or AdrPrefund

, are not ready yet.
At this moment, Bob reveals his signature on tx stp. Once tx stp is published on the Bitcoin

blockchain, the execution phase starts. During the execution phase, either Alice reveals pres and
publishes transaction txPdefault

(along with signatures on the transaction), or Bob reveals preb and
publishes transaction txPrefund

(along with signatures on the transaction) after T1 time has passed
since the confirmation of tx stp. In the honest run of the protocol, if txPdefault

is confirmed, Bob
gets back his collateral immediately. If not, Bob can redeem the collateral after waiting for time
T1 + T2 using txPrefund

and txCrefund
. In the event of misbehavior leading to both pres and preb being

revealed, any miner in the system can immediately spend from the Cburn branch of either Adrstp,
or AdrPrefund

, and burn all coins except $ϵ coins as transaction fee for itself.

6.2.2 Instantiating RapidashB with CSP Fairness

We have minor differences compared to the single instance instantiation.

Transactions. We describe below the different transactions needed for our RapidashB instanti-
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Figure 3: The transaction flow of RapidashKC in Bitcoin absent external incentives. Rounded
boxes denote transactions, rectangles within are outputs of the transaction. Incoming arrows denote
transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the
end of the arrow. Solid lines indicate the transaction output can be spent only if both users sign
the spending transaction. Dashed arrows indicate that the output can be spent by one user (A for
Alice, and B for Bob). The timelock (T1 and T2) associated with a transaction output is written
over the corresponding outgoing arrow.

ation.

• We now have an additional payment redeem transaction, tx ping

PB
refund

(see Table 5) apart from

txPB
default

and txPB
refund

that redeem from the payment address AdrBstp. We have the transaction

tx ping

PB
refund

that redeems $xb + $cBb coins to an auxiliary address AdrPB
refund

. The description of

ΦB
stp is given below in Figure 4. We set the transaction txping

PB
refund

to redeem the coins from the

(EB
2 ) branch. This transaction will correspond to the empty message call to the RapidashB

contract in activation point PB
refund. The script ΦB

stp has a modification in the CB
burn branch,

where we require either (pres, preb, prec) along with the signatures of Alice and Bob. Similarly,
the script ΦPB

refund
of the auxiliary addresses is modified in its CB

burn branch.

• In addition to the collateral redeem transaction txCB
refund

, we have the transaction tx ping

CB
refund

which

redeems the coins to Bob from the auxiliary address generated by txping

PB
refund

. We have modified

transactions tx
PB
refund

CB
burn

and txCB
burn

which can be redeemed only if pres, preb and prec are revealed,

such that H(pres) = hs, H(preb) = hb, and H(prec) = hc. We have an additional transaction
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tx
PB
refund,ping

CB
burn

that redeems the coins from the auxiliary address of txping

PB
refund

if pres, preb and prec

are revealed. Unlike the single instance, here we replace T2 with τB. A pictorial description
of the transaction flow is described in Figure 5.

Table 5: Description of additional transactions in Bitcoin for Rapidash atomic swap with CSP
fairness. Here ΦB is a script that requires a signature from Bob’s public key, respectively.

Description

tx ping

PB
refund

tx

(
[(AdrBstp,Φ

B
stp, $xb + $cBb )],

[(AdrPB
refund

,ΦPB
refund

, $xb + $cBb )]

)

tx ping

CB
refund

tx

(
[(AdrPB

refund
,ΦPB

refund
, $xb + $cBb )],

[(AdrB2 ,Φ
B, $xb + $cBb )]

)

tx
PB
refund,ping

CB
burn

tx

(
[(AdrPB

refund
,ΦPB

refund
, $xb + $cBb )],

[(AdrBburn,Φ
B
burn, $xb + $cBb − $ϵB)]

)

Protocol Flow. Alice and bob first agree on the setup transaction txB
stp and sign the redeeming

transactions txPB
default

, txPB
refund

, txCB
refund

, tx
PB
refund

CB
burn

, txping

CB
refund

, tx
PB
refund,ping

CB
burn

and txCB
burn

and broadcast all these

transactions and the respective signatures, like before. They sign the transaction tx ping

PB
refund

such that

only Alice has both signatures, and she keeps them private for now. Finally, they sign the setup
transaction txB

stp and publish it on the blockchain, starting the execution phase.

Whenever Alice wishes to activate PB
refund branch with an empty ping message, she publishes the

transaction tx ping

PB
refund

along with the valid signatures she has in her possession. If tx ping

PB
refund

is published

on the blockchain, activation point CB
refund can be activated by txping

CB
refund

after a timeout of τB time

units. The rest of the protocol proceeds exactly as the description of the swap protocol.

6.2.3 Instantiating RapidashA with CSP Fairness

We describe all the transactions, addresses, and scripts needed in the RapidashA instantiation
for the atomic swap. Notice that the roles of Alice and Bob are reversed compared to RapidashB

above. Specifically, in RapidashA, Bob can use pres to retrieve the coins from the payment address,
while Alice can use prea after a timeout of TA

1 to retrieve the coins. The main difference between
this instantiation and the RapidashB instantiation above is that in the execution phase both the
payment address activation points PA

default and PA
refund can be activated by empty message calls. We

also have modified collateral redeeming transactions that redeem the coins from the CA
burn branch

of the ΦA
stp.

Transactions. We describe below the different transactions needed for our RapidashA instan-
tiation. We have the same set of transactions that are analog of the RapidashB instantiation,
except for one additional transaction tx ping

PA
default

(see Table 6). The transaction redeems the coins

from the payment address AdrAstp using the (EA
1 ) branch of ΦA

stp. The description of ΦA
stp is given

below in Figure 6 with Alice and Bob’s roles being reversed in RapidashA. This transaction will
correspond to the empty message call to RapidashA activation point PA

default. The script Φ
A
stp (and

correspondingly ΦPA
refund

) has a modification in the CA
burn branch, where we require either (pres, prea)
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ΦB
stp(tx , pres, preb, σa, σb)

PB
default : if (H(pres) = hs) ∧ (H(prec) = hc)∧

(Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

PB
refund : if ( NOW > TB

1 ) ∧ (H(preb) = hb)

∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

EB
2 : if ( NOW > TB

1 ) ∧ (Vf(pk3a, tx , σb) = 1) ∧ (Vf(pk3b , tx , σb) = 1)

then return 1

CB
burn if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)∧(
(H(pres) = hs) ∧ (H(preb) = hb) ∧ (H(prec) = hc)

)
then return 1

// Values hs, hb, hc, pka, pkb, T
B
1 , pk′a, pk

′
b, pk

′′
a , pk

′′
b , pk

3
a, pk

3
b are hardwired

ΦPB
refund

(tx , pres, preb, prec, σa, σb)

CB
refund : if ( NOW > τB) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

CB
burn : if (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)∧(
(H(pres) = hs) ∧ (H(preb) = hb) ∧ (H(prec) = hc)

)
then return 1

// Values τB, hs, hb, hc, pka, pkb, pk
′
a, pk

′
b are hardwired

Figure 4: The description of script ΦB
stp and ΦPB

refund
for atomic swap with CSP fairness. Here tx

is the transaction spending from the script. Keys (pka, pk
′
a, pk

′′
a, pk

3
a) and (pkb, pk

′
b, pk

′′
b , pk

3
b) belong

to Alice and Bob, respectively.

Table 6: Description of additional transaction in Bitcoin for RapidashA atomic swap with CSP
fariness. Here ΦA and ΦB are scripts that require a signature from Alice’s and Bob’s public key,
respectively.

Description

tx ping

PA
default

tx

(
[(AdrAstp,Φ

A
stp, $xa + $cAa + $cAb )],

[(AdrA1 ,Φ
A, $cAa ), (Adr

B
1 ,Φ

B, $xa + $cAb )]

)

or (prea, preb) along with the signatures of Alice and Bob. We have the corresponding redeeming

transactions as tx
PA
refund

CA
burn

, tx
PA
refund,ping

CA
burn

and txCA
burn

similar to RapidashB. A pictorial description of the

transaction flow for payment and collateral redeem is given in Figure 7.

Protocol Flow. Alice and Bob, first agree on the setup transaction txA
stp and sign the redeeming

transactions. They broadcast all these transactions and the respective signatures, like before.
However, this time Alice and Bob sign the transaction txping

PA
default

such that only Alice has both

signatures. She does not broadcast the signatures and keeps them private. Similarly, Alice and
Bob sign the transaction tx ping

PA
refund

such that only Bob has both signatures. He keeps them private and
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Figure 5: The transaction flow of RapidashB in Bitcoin for atomic swap with CSP fairness. Rounded boxes
denote transactions, rectangles within are outputs of the transaction. Incoming arrows denote transaction
inputs, outgoing arrows denote how an output can be spent by a transaction at the end of the arrow. Solid
lines indicate the transaction output can be spent only if both users sign the spending transaction. Dashed
arrows indicate that the output can be spent by one user (A for Alice, and B for Bob).

does not broadcast them. Notice that none of the transactions can be published on the blockchain
yet as the setup transaction is not yet published. Finally, they sign the setup transaction txA

stp and
publish it on the blockchain, thus starting the execution phase.

Whenever Alice wishes to activate PA
default in RapidashA with an empty message, she publishes

the transaction tx ping

PA
default

along with the valid signatures she has in her possession. Similarly, whenever

Bob wishes to activate PA
refund in RapidashA with an empty message, he publishes the transaction

tx ping

PA
refund

along with the valid signatures he has in his possession. If txping

PA
refund

is published on the

blockchain, activation point CA
refund can be activated by txping

CA
refund

after a timeout of τA time units.

Rest of the flow follows exactly the description of the atomic swap protocol.
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ΦA
stp(tx , pres, prea, preb, σa, σb)

PA
default : if (H(pres) = hs) ∧ (Vf(pka, tx , σa) = 1)

∧ (Vf(pkb, tx , σb) = 1) then return 1

PA
refund : if ( NOW > TA

1 ) ∧ (H(prea) = ha)

∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

EA
1 : if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)

then return 1

EA
2 : if ( NOW > TA

1 ) ∧ (Vf(pk3a, tx , σb) = 1)∧
(Vf(pk3b , tx , σb) = 1) then return 1

CA
burn : if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1) ∧((

(H(pres) = hs) ∧ (H(prea) = ha)
)
∨
(
(H(prea) = ha) ∧ (H(preb) = hb)

))
then return 1

// Values hs, ha, hb, pka, pkb, T
A
1 , pk′a, pk

′
b, pk

′′
a , pk

′′
b , pk

3
a, pk

3
b , pk

4
a, pk

4
b are hardwired

ΦPA
refund

(tx , pres, prea, preb, σa, σb)

CA
refund : if ( NOW > τA) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

CA
burn : if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1) ∧((

(H(pres) = hs) ∧ (H(prea) = ha)
)
∨
(
(H(prea) = ha) ∧ (H(preb) = hb)

))
then return 1

// Values τA, hs, ha, hb, pka, pkb, pk
′
a, pk

′
b are hardwired

Figure 6: The description of script ΦA
stp for RapidashA in atomic swap with CSP fairness.

7 Conclusion and Future Work

In this work, we formalized key notions for blockchain-based fair trading and presented protocols
that satisfy these notions. We leave several interesting questions for future work: Is it possible
to have an atomic swap secure against user-miner collusion which requires each user to deposit
collateral on at most one chain? Can we have fair exchange among more than two parties?
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(or)

(or)

(or)

Figure 7: The transaction flow of RapidashA in Bitcoin for atomic swap with CSP fairness.
Rounded boxes denote transactions, and rectangles within are outputs of the transaction. Incom-
ing arrows denote transaction inputs, outgoing arrows denote how an output can be spent by a
transaction at the end of the arrow. Solid lines indicate the transaction output can be spent only
if both users sign the spending transaction. Dashed arrows indicate that the output can be spent
by one user (A for Alice, and B for Bob). The timelock (TA

1 and τA) associated with a transaction
output is written over the corresponding outgoing arrow.
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A Knowledge-Coin Exchange: Proof of CSP-Fairness and Dropout
Resilience

Lemma A.1 (Alice-miner coalition). Let C be any coalition that consists of Alice and an arbitrary
subset of miners10 (possibly no miner). Then, if $ϵ < $v, for any (even unbounded) coalition
strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

Proof. When the coalition C follows the protocol, they will send pres at t = 0, and Pdefault will be
activated in the next block. In this case, the utility of C is $v − $va.

Now, consider the case that the coalition C deviates from the honest strategy. We may assume
that the coalition does not post any new smart contract on the fly and deposit money into it11 —
if it did so, it cannot recover more than its deposit since any player not in C will not invoke the
smart contract. There are two possibilities:

• First, Pdefault is activated at some point. In this case, nothing else can be activated. Thus,
the utility of C is $v − $va, which is the same as the honest case.

• Second, Pdefault is never activated. The Alice-miner coalition cannot cash out from Prefund or
Crefund, it can only cash out ϵ from Cburn. However, when Cburn is activated, pres is publicly
known, so the utility of C is $ϵ− $va, which is less than the honest case since $ϵ < $v.

Lemma A.2 (Bob-miner coalition). Let C be any coalition that consists of Bob and a subset of
miners controlling at most γ fraction of mining power. Then, as long as $cb < $ϵ and γT2 ≤ $cb

$cb+$v ,
for any (even unbounded) coalition strategy SC, it must be that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C).

Proof. The honest Alice will always send pres to Pdefault. Thus, when C follows the protocol, Pdefault

will be activated in the next block, and the utility of C is $vb − $v.
Now, suppose C may deviate from the protocol. As in Theorem A.1, we may assume that the

coalition does not post any new smart contract on the fly and deposit money into it. There are
three cases.

10We assume that the coalition cannot break the underlying consensus layer. If the underlying consensus actually
secures against, say, honest majority, then essentially the lemma holds for any coalition that wields minority of the
mining power.

11However, the coalition C itself could be facilitated by smart contracts, our modeling of coalition already captures
any arbitrary side contract within the coalition.
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• First, neither Pdefault nor Prefund is activated. Because Prefund is not activated, Crefund cannot
be activated. The Bob-miner coalition can only get $ϵ from Cburn. Thus, the coalition’s utility
is at most $vb−$v−$cb+$ϵ < $vb−$v where the inequality is due to the constraint $cb > $ϵ.

• Second, Pdefault is activated. In this case, nothing else can be activated, and the utility of C
is $vb − $v, which is the same as the honest case.

• Third, Prefund is activated. Let t∗ ≥ T1 be the time at which Prefund is activated. There are
two subcases. In the first subcase, the coalition also gets $ϵ from Cburn during [t∗, t∗ + T2].
In this case, the coalition’s utility is at most $vb − $cb − $v + $ϵ, and since $cb > $ϵ, this
is less than the honest case. Henceforth, we may assume that the coalition does not invoke
Cburn after time t∗ as after time t∗ + T2 it is always better to invoke Crefund. Since the honest
Alice posts pres at t = 0 and t∗ ≥ T1, both pres and preb are publicly known at t∗. Since
all non-colluding miners are honest, after t∗, they will activate Cburn themselves when they
mine a new block if Cburn has not already been activated before. If a non-colluding miner
mines a new block during (t∗, t∗ + T2], we say that the coalition loses the race. Otherwise,
we say that the coalition wins the race. If the coalition loses the race, then it gets nothing
from Crefund or Cburn, and thus its utility is at most $vb − $cb − $v. Else if it wins the race,
then the coalition’s utility is at most $vb. The probability p that the coalition wins the race
is upper bounded by p ≤ γT2 . Therefore, the coalition’s expected utility is at most

($vb − $cb − $v) · (1− p) + $vb · p.

For ($vb − $cb − $v) · (1 − p) + $vb · p to exceed the honest utility $vb − $v, it must be that
p > $cb

$cb+$v which contradicts our assumption.

We thus conclude that C cannot increase its utility through any deviation.

Theorem A.3 (CSP fairness). Suppose that the hash function H(·) is a one-way function, $cb < $ϵ,
$ϵ < $v, and γT2 ≤ $cb

$cb+$v . Then, the RapidashKC protocol satisfies γ-CSP-fairness.

Proof. Lemmas A.1 and A.2 proved γ-CSP-fairness for the cases when the coalition consists of
either Alice or Bob, and possibly some miners. Since by our assumption, Alice and Bob are not
in the same coalition, it remains to show γ-CSP-fairness for the case when the coalition consists
only of some miners whose mining power does not exceed γ. Since both Alice and Bob are honest,
the coalition’s utility is 0 unless Cburn is activated. However, Cburn requires that C to find preb on
its own — the probability of this happening is negligibly small due to the one-wayness of the hash
function H(·).

We now prove that RapidashKC is dropout resilient.

Theorem A.4 (Dropout resilience). Suppose that H(·) is a one-way function and that all players
are PPT machines. RapidashKC is dropout resilient.

Proof. Throughout the proof, for any X ∈ {pres, preb}, we ignore the negligible probability that
the miners can find the preimage X by itself if Alice and Bob have never sent X before.

We first analyze the case where Alice drops out. There are two possible case: 1) Alice drops
out before posting a transaction containing pres; 2) Alice drops out after she already posted a
transaction containing pres at t = 0. In the first case, as long as 1/poly(λ) fraction of the mining
power is honest, Bob would activate Prefund and Crefund in polynomial time except with negligible
probability, and his utility is 0 since he simply gets all his deposit back. In the second case, the
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honest Bob will not post preb to Prefund. An honest miner would include Alice’s transaction and
activate Pdefault. As long as 1/poly(λ) fraction of the mining power is honest, Pdefault will be activated
in polynomial time except with negligible probability. As a result, Bob’s utility is $vb − $v > 0.

Next, we analyze the case where Bob drops out. In this case, Alice always posts a transaction
containing pres, and except with negligible probability, Pdefault will always be activated. Thus,
Alice’s utility is always $v − $va > 0.

To sum up, in all cases, the utility of the remaining party is always non-negative except with
negligible probability.

B Atomic Swap: Proof of CSP-Fairness and Dropout Resilience

Before proving CSP fairness of the protocol, we give some useful lemmas. CSP fairness is formally
proven by Theorem B.5.

We define the net profit of C from RapidashB to be the coins that C gets from RapidashB

minus the coins that C deposits into RapidashB. The net profit of C from RapidashA is defined
similarly. Notice that the net profit might be negative, which means C deposits more coins than
what it gets.

Lemma B.1. Suppose both RapidashB and RapidashA are active. Suppose the coalition A
consists of Alice and an arbitrary γ ∈ [0, 1] fraction of the mining power. If AcAa > AϵA, the utility
of A can be more than the honest case, that is, $AV(Bxb − Axa), only if one of the following holds

• PB
default, P

A
refund and CA

refund are activated;

• CB
burn, P

A
refund and CA

refund are activated.

Proof. First, we prove that either PB
default or C

B
burn is the necessary condition for the utility of A to

be more than the honest case. For the sake of reaching a contradiction, suppose neither of PB
default

or CB
burn is activated. Because A cannot get any coin from PB

refund or CB
refund, the net profit from

RapidashB is at most 0. However, because AcAa > AϵA, we have AϵA − Axa − AcAa < −Axa < 0.
Thus, the net profit from RapidashA is also at most 0. Consequently, the utility of A is at most
zero, which is less than $AV(Bxb − Axa). Thus, one of PB

default and CB
burn must be activated.

Next, we prove that PA
refund and CA

refund must be activated for the utility of A to be more than
the honest case. For the sake of reaching a contradiction, suppose one of them is not activated.
Because AcAa > AϵA > 0, the net profit from RapidashA is at most −Axa since PA

refund or CA
refund is

not activated. However, the net profit from RapidashB is at most Bxb. Thus, the utility of A is
at most $AV(Bxb − Axa), which is the same as the honest case. Thus, both of PA

refund and CA
refund

must be activated.

Lemma B.2 (Alice-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let A be any coalition that consists of Alice and γ ∈ [0, 1] fraction of mining power. Then, as long

as γτ
A ≤ AcAa

AcAa+Axa
, for any PPT coalition strategy SA, except with negligible probability, it must be

utilA(SA, HS−A) ≤ utilA(HSA, HS−A),

where HSA and HS−A denotes the honest strategy for coalition A and everyone not in A, respec-
tively.
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Proof. Recall that the utility of A is $AV(Bxb−Axa) > 0 under an honest execution. Now, suppose
A may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it (see the definition of strategy space in Section 2.1)
–— if it did so, it cannot recover more than its deposit since any player not in A will not invoke
the smart contract. We analyze the possible cases depending on which phase Bob enters.

Bob enters the abort phase. If RapidashB has never been active, the net profit of A from
RapidashB is at most zero. Now, assume RapidashB is active. When Bob enters the abort phase,
he never sends any transaction containing prec. Ignoring the negligible probability that A finds
prec by itself, PB

default or CB
burn can never be activated. Because Alice does not get any coin from

PB
refund or CB

refund, the net profit of A from RapidashB is at most zero. On the other hand, because
AcAa > AϵA, the net profit of A from RapidashA is at most zero, no matter whether RapidashA

is active or not.
To sum up, except with negligible probability, the utility of A is at most zero, which is less than

the honest case.

Bob enters the execution phase. If Bob enters the execution phase, both RapidashB and
RapidashA must be acitve. By Theorem B.1, the utility of A can exceed the honest case only
when (PB

default + PA
refund + CA

refund) or (CB
burn + PA

refund + CA
refund) are activated. Henceforth, we

assume either (PB
default + PA

refund + CA
refund) or (CB

burn + PA
refund + CA

refund) are activated. Notice
that in either case, PA

refund must be activated. When Bob enters the execution phase, PA
refund can be

activated only either 1) by Bob sending ping to PA
refund after C

B
refund has been activated, or 2) by Alice

sending prea to PA
refund. Consider the first scenario. In this case, since CB

refund has been activated,
Alice can’t get any money from RapidashB. However, from RapidashA, Alice can get at most
zero. Thus, the utility of A is less than the honest case. Now consider the second case. Suppose
that PA

refund is activated at AliceChain time t∗ ≥ TA
1 , so prea is publicly known after AliceChain time

t∗.
Now, notice that if PB

default or C
B
burn is activated, A has to send a transaction containing pres.

• Case 1: A sends a transaction containing pres to PB
default or CB

burn before BobChain time TB
1 .

Since BobChain time TB
1 is earlier than AliceChain time TA

1 , pres and prea are both publicly
known at AliceChain time t∗. Thus, during AliceChain time (t∗, t∗+τA], any miner in −A will
activate CA

burn if it wins a block. We say A loses the race if a non-colluding miner mines a new
block during AliceChain time (t∗, t∗ + τA]. Otherwise, we say A wins the race. If A loses the
race, it gets nothing from CA

refund or C
A
burn, and its utility is at most $AV(Bxb−Axa−AcAa ). Else

if A wins the race, then its utility is at most $AV(Bxb), which can be achieved by activating
PA
refund, C

A
refund and PB

default. The probability p that A wins the race is upper bounded by

p ≤ γτ
A
. Therefore, the expected utility of A is upper bounded by

$AV((Bxb − Axa − AcAa ) · (1− p) + Bxb · p).

Since p ≤ γτ
A ≤ AcAa

AcAa+Axa
, we have p · $AV(AcAa + Axa) ≤ $AV(AcAa ). Thus, we have

$AV((Bxb − Axa − AcAa ) + p · $AV(AcAa + Axa)) ≤ $AV(Bxb − Axa).

Finally, we obtain

$AV((Bxb − Axa − AcAa ) · (1− p) + Bxb · p) ≤ $AV(Bxb − Axa),

which implies the strategic utility is upper bounded by the utility of the honest case.
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• Case 2: A does not send any transaction containing pres to PB
default or CB

burn before BobChain
time TB

1 . In this case, the honest Bob will send preb to PB
refund at BobChain time TB

1 . Because
PA
refund is activated at AliceChain time t∗ ≥ TA

1 , which is later than BobChain time TB
1 , prea

and preb are both publicly known at AliceChain time t∗. Thus, during AliceChain time
(t∗, t∗+τA], any miner in −A will activate CA

burn if it wins a block. By the same calculation as

the previous case, since p ≤ γτ
A ≤ AcAa

AcAa+Axa
, we have $AV((Axa−AcAa+Bxb)·(1−p)+Bxb ·p) ≤

$AV(Bxb − Axa).

Lemma B.3. Suppose RapidashB and RapidashA are both active. Suppose the coalition B con-
sists of Bob and an arbitrary γ ∈ [0, 1] fraction of the mining power. If BcBb > BϵB and AcAb > AϵA,
the utility of B can be more than the honest case, that is, $BV(Axa − Bxb), only if PB

refund, C
B
refund

and PA
default are activated.

Proof. First, note that PB
default and PB

refund are mutually exclusive, and neither CB
refund nor CB

burn can
be activated after PB

default because not enough money is available in the contract. Moreover, CB
refund

and CB
burn are mutually exclusive. Thus, all the possible cases for the net profit of Bob’s coalition

from RapidashB can be summarized as shown in Table 7.

which is activated net profit of Bob’s coalition

none or only PB
refund −Bxb − BcBb

PB
default −Bxb

PB
refund + CB

refund 0

CB
burn or PB

refund + CB
burn ≤ BϵB − Bxb − BcBb

Table 7: The net profit of Bob’s coalition from RapidashB, assuming that RapidashB is active.

Similarly, if PA
default is activated, no other activation points of RapidashA can be activated.

Moreover, CA
refund and CA

burn are mutually exclusive. Thus, all the possible cases for the net profit
of Bob’s coalition from RapidashB can be summarized as shown in Table 8.

which is activated net profit of Bob’s coalition

none or only PA
refund −AcAb

PA
default Axa

PA
refund + CA

refund 0

CA
burn or PA

refund + CA
burn ≤ AϵA − AcAb

Table 8: The net profit of Bob’s coalition from RapidashA, assuming that RapidashA is active.

Suppose the coalition C consists of the miners and Bob. If C follows the protocol, PB
default and

PA
default will be activated, and the utility of C is $BV(Axa − Bxb) > 0. When PB

refund, C
B
refund and

PA
default are activated, C’s utility is $BV(Axa). Now, we will show that it is the only scenario for
C’s utility to exceed the honest case. For the sake of reaching a contradiction, suppose C’s utility
is strictly greater than $BV(Axa − Bxb), while one of PB

refund, C
B
refund and PA

default is not activated.
There are two subcases.

• Subcase 1: PA
default is not activated. Because AcAb > AϵA, we have AϵA − AcAb < 0. Thus,

if PA
default is not activated, the net profit from RapidashA is at most 0. Because BcBb > BϵB,
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we have BϵB − Bxb − BcBb < −Bxb. Thus, the net profit from RapidashB is also at most 0.
Consequently, the utility of C is at most zero, which is less than $BV(Axa − Bxb).

• Subcase 2: PB
refund or CB

refund is not activated. Because BcBb > BϵB ≥ 0, the net profit
from RapidashB is at most −Bxb since PB

refund or CB
refund is not activated. However, the net

profit from RapidashA is at most Axa. Thus, the utility of C is at most $BV(Axa − Bxb),
which is the same as the honest case.

Therefore, we conclude that if C’s utility is strictly greater than $BV(Axa − Bxb), P
B
refund, C

B
refund

and PA
default must be activated.

Lemma B.4 (Bob-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let B be any coalition that consists of Bob and a subset of miners controlling at most γ ∈ [0, 1]

fraction of mining power. Then, as long as γτ
B ≤ BcBb

BcBb+Bxb
, for any PPT coalition strategy SB,

except with negligible probability, it must be

utilB(SB, HS−B) ≤ utilB(HSB, HS−B),

where HSB and HS−B denotes the honest strategy for coalition B and everyone not in B, respec-
tively.

Proof. Recall that the utility of B is $BV(Axa−Bxb) > 0 under an honest execution. Now, suppose
B may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its deposit
since any player not in B will not invoke the smart contract. We analyze the two possible cases
depending on which phase Alice enters.

Alice enters the abort phase. If RapidashA has never been active, the net profit of B from
RapidashA is at most zero. Now, assume RapidashA is active. When Alice enters the abort
phase, she never sends any transaction containing pres. Ignoring the negligible that B finds pres
by itself, PA

default can never be activated. Because AcAb > AϵA, the net profit of B from RapidashA

is at most zero. On the other hand, because Bxb > BϵB, the net profit of B from RapidashB is at
most zero, no matter RapidashB is active or not.

To sum up, except with negligible probability, the utility of B is at most zero, which is less than
the honest case.

Alice enters the execution phase. By Theorem B.3, the utility of B can be more than the
honest case only if PB

refund, C
B
refund and PA

default are activated, so we assume it is the case. Therefore,
we may assume that PB

refund is activated at BobChain time t∗ ≥ TB
1 , and preb is publicly known after

BobChain time t∗. If Alice enters the execution, Bob must have sent prec before BobChain time TB
0 .

Moreover, Alice sends pres to PB
default at BobChain time TB

0 and TB
0 < TB

1 . Therefore, pres, preb
and prec are all publicly known at BobChain time t∗. Thus, during BobChain time (t∗, t∗+τB], any
miner in −B will activate CB

burn if it wins a block. We say B loses the race if a non-colluding miner
mines a new block during BobChain time (t∗, t∗+ τB]. Otherwise, we say B wins the race. If B loses
the race, it gets nothing from CB

refund or CB
burn, and its utility is at most $BV(Axa−Bxb−BcBb ) which

can be achieved if PA
default is activated. Else if B wins the race, then its utility is at most $BV(Axa)

which can be achieved by activating PB
refund, C

B
refund and PA

default. Since p ≤ γτ
B ≤ BcBb

BcBb+Bxb
, we have

$BV((Axa − Bxb − BcBb ) · (1− p) + Axa · p) ≤ $BV(Axa − Bxb).
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Theorem B.5 (CSP fairness). Suppose that the hash function H(·) is a one-way function. For
any γ ∈ [0, 1], if the parameters satisfy the constraints specified in Section 4.2, then, the atomic
swap protocol satisfies γ-CSP-fairness.

Proof. In Theorem B.2 and Theorem B.4, we show that the atomic swap protocol satisfies γ-CSP-
fairness when the coalition consists of Alice or Bob, and possibly with some miners. Because we
assume that Alice and Bob are not in the same coalition, it remains to show γ-CSP-fairness when
the coalition C consists only of miners controlling at most γ fraction of the mining power.

Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase. We may assume that the coalition does not post any new smart contract on the fly
and deposit money into it –— if it did so, it cannot recover more than its deposit since any player
not in B will not invoke the smart contract.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when CB

burn or CA
burn is activated. There

are two possible cases.

• Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends
pres to PB

default, and she never sends any transaction containing prea. Ignoring the negligible
probability that C finds prea by itself, CA

burn can never be activated. Moreover, Alice always
sends pres to P

B
default at latest at BobChain time TB

0 , and thus Bob will not post any transaction
containing preb. Ignoring the negligible probability that C finds preb by itself, CB

burn can never
be activated. To sum up, except the negligible probability, the utility of C is at most zero,
which is the same as the honest case.

• Case 2: both Alice and Bob enter the abort phase. In this case, Alice never sends any trans-
action containing pres. Ignoring the negligible probability that C finds pres by itself, CB

burn

can never be activated, and CA
burn can be activated only by (prea, preb). However, Bob always

sends ping to PA
refund and preb to PB

refund at BobChain time TB
0 , so Alice never sends any trans-

action containing prea. Ignoring the negligible probability that C finds prea by itself, CA
burn

cannot be activated by (prea, preb). To sum up, except with negligible probability, the utility
of C is at most zero, which is the same as the honest case.

Remark B.6. The assumption that $AV(Bxb−Axa) > 0 and $BV(Axa−Bxb) > 0 (see Section 2.4)
is crucial to prove CSP fairness, as it ensures that no PPT strategy outperforms the honest strategy.
Otherwise, if the assumption does not hold, either Alice or Bob could prefer to drop out in order
to get utility zero, since the utility of the honest case would be negative.

Nevertheless, our protocol still disincentivizes strategic parties from deviating from the proto-
col even if the assumption does not hold. Specifically, the protocol additionally guarantees that
when the honest case yields negative utility, the best utility a strategic party can achieve is zero -
equivalent to not participating in the protocol. To see this, notice that the proof of Theorem B.2
shows that the strategic Alice’s utility is either upper bounded by 0 or $AV(Bxb −Axa). Similarly,
the proof of Theorem B.4 shows that the strategic Bob’s utility is either upper bounded by 0 or
$BV(Axa − Bxb). Thus, if the assumption does not hold for the strategic parties, their utility is at
most 0 for any PPT strategies, which is the same as not initiating the protocol.

Theorem B.7 (Dropout resilience of atomic swap). Suppose that H(·) is a one-way function and
that all players are PPT machines. Then, the atomic swap protocol is dropout resilient.
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Proof. Throughout the proof, for any X ∈ {pres, preb, prec, prea}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out with three possible cases.

• Case 1: Bob enters the abort phase. In this case, Bob will send preb to PB
refund and ping to

PA
refund at BobChain time TB

0 . When τB BobChain time has passed since PB
refund is activated,

Bob sends ping to CB
refund; when τA AliceChain time has passed since PA

refund is activated, Bob
sends ping to CA

refund. When Bob enters the abort phase, he never sends any transaction con-
taining prec, and thus Alice never enters the execution phase and never sends any transaction
containing pres no matter when she drops out. Because Bob sends ping to PA

refund at BobChain
time TB

0 , Alice never sends any transaction containing prea. Without knowing pres, prec and
prea, the miner cannot activate PB

default, C
B
burn, P

A
default and CA

burn.

As long as 1/poly(λ) fraction of the mining power is honest, PB
refund, C

B
refund, P

A
refund and CA

refund

must be activated in polynomial time except with negligible probability, and Bob’s utility is
0 since he simply gets all his deposit back.

• Case 2: Bob enters the execution phase, and Alice sent pres before BobChain time TB
1 . In this

case, Bob will send pres to PA
default at BobChain time TB

1 at latest. Moreover, Alice and Bob
never send any transaction containing preb and prea. Without knowing preb and prea, the
miner cannot activate PB

refund, P
A
refund, C

B
burn and CA

burn. If P
B
refund and PA

refund are not activated,
CB
refund and CA

refund cannot be activated either.

As long as 1/poly(λ) fraction of the mining power is honest, PB
default and PA

default must be
activated in polynomial time except with negligible probability, and Bob’s utility is $BV(Axa−
Bxb) > 0.

• Case 3: Bob enters the execution phase, while Alice drops out before sending pres. In this
case, Bob will send preb to PB

refund at BobChain time TB
1 . When τB BobChain time has passed

since PB
refund is activated, Bob sends ping to CB

refund. As soon as CB
refund is activated, Bob sends

ping to PA
refund. When τA AliceChain time has passed since PA

refund is activated, Bob sends ping
to CA

refund. Without knowing pres and prea, the miner cannot activate PB
default, C

B
burn, P

A
default

and CA
burn.

As long as 1/poly(λ) fraction of the mining power is honest, PB
refund, C

B
refund, P

A
refund and CA

refund

must be activated in polynomial time except with negligible probability, and Bob’s utility is
0 since he simply gets all his deposit back.

Next, we analyze the case where Bob drops out. There are two cases.

• Case 1: Alice enters the abort phase. If Alice enters the abort phase, Bob must drop out
before BobChain time TB

0 , so Bob has not sent preb to PB
refund. Then, Alice will send ping to

PB
refund at BobChain time TB

0 , and prea to PA
refund at BobChain time TB

1 . When τB BobChain
time has passed since PB

refund is activated, Alice sends ping to CB
refund; when τA AliceChain time

has passed since PA
refund is activated, Alice sends ping to CA

refund. If Alice enters the abort
phase, she never sends any transaction containing pres. Without knowing pres and preb, the
miner cannot activate PB

default, C
B
burn, P

A
default and CA

burn.

As long as 1/poly(λ) fraction of the mining power is honest, PB
refund, C

B
refund, P

A
refund and CA

refund

must be activated in polynomial time except with negligible probability, and Alice’s utility is
0 since she simply gets all her deposit back.
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• Case 2: Alice enters the execution phase. In this case, Bob must have sent prec to PB
default.

Alice will send pres to PB
default before BobChain time TB

1 , and thus Bob never sends any
transaction containing preb. As soon as PB

default is activated, she will send ping to PA
default. In

the execution phase, Alice never sends any transaction containing prea. Without knowing
preb and prea, the miner cannot activate PB

refund, P
A
refund, C

B
burn and CA

burn. If P
B
refund and PA

refund

are not activated, CB
refund and CA

refund cannot be activated either.

As long as 1/poly(λ) fraction of the mining power is honest, PB
default and PA

default must be acti-
vated in polynomial time except with negligible probability, and Alice’s utility is $AV(Bxb −
Axa) > 0.
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